Images as Occlusions of Textures: A Framework for Segmentation

被引:37
作者
McCann, Michael T. [1 ]
Mixon, Dustin G. [2 ]
Fickus, Matthew C. [2 ]
Castro, Carlos A. [3 ]
Ozolek, John A. [4 ]
Kovacevic, Jelena [5 ]
机构
[1] Carnegie Mellon Univ, Dept Biomed Engn, Ctr Bioimage Informat, Pittsburgh, PA 15213 USA
[2] Air Force Inst Technol, Dept Math & Stat, Wright Patterson AFB, OH 45433 USA
[3] Univ Pittsburgh, Magee Womens Res Inst & Fdn, Dept Obstet & Gynecol, Pittsburgh, PA 15260 USA
[4] Univ Pittsburgh, Childrens Hosp Pittsburgh, Dept Pathol, Pittsburgh, PA 15260 USA
[5] Carnegie Mellon Univ, Dept Biomed Engn, Dept Elect & Comp Engn, Ctr Bioimage Informat, Pittsburgh, PA 15213 USA
关键词
Image segmentation; occlusion models; texture; local histograms; deconvolution; non-negative matrix factorization; UNSUPERVISED SEGMENTATION; MODELS; ALGORITHM;
D O I
10.1109/TIP.2014.2307475
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new mathematical and algorithmic framework for unsupervised image segmentation, which is a critical step in a wide variety of image processing applications. We have found that most existing segmentation methods are not successful on histopathology images, which prompted us to investigate segmentation of a broader class of images, namely those without clear edges between the regions to be segmented. We model these images as occlusions of random images, which we call textures, and show that local histograms are a useful tool for segmenting them. Based on our theoretical results, we describe a flexible segmentation framework that draws on existing work on nonnegative matrix factorization and image deconvolution. Results on synthetic texture mosaics and real histology images show the promise of the method.
引用
收藏
页码:2033 / 2046
页数:14
相关论文
共 48 条
[1]   SEEDED REGION GROWING [J].
ADAMS, R ;
BISCHOF, L .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (06) :641-647
[2]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[3]  
[Anonymous], 2006, Digital Image Processing
[4]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[5]   Joint NDT Image Restoration and Segmentation Using Gauss-Markov-Potts Prior Models and Variational Bayesian Computation [J].
Ayasso, Hacheme ;
Mohammad-Djafari, Ali .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2265-2277
[6]   Algorithms and applications for approximate nonnegative matrix factorization [J].
Berry, Michael W. ;
Browne, Murray ;
Langville, Amy N. ;
Pauca, V. Paul ;
Plemmons, Robert J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) :155-173
[7]   Blobworld: Image segmentation using expectation-maximization and its application to image querying [J].
Carson, C ;
Belongie, S ;
Greenspan, H ;
Malik, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (08) :1026-1038
[8]   A General System for Automatic Biomedical Image Segmentation Using Intensity Neighborhoods [J].
Chen, Cheng ;
Ozolek, John A. ;
Wang, Wei ;
Rohde, Gustavo K. .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2011, 2011
[9]  
CHEN KCJ, 2012, P IEEE INT C IM PROC, P2033
[10]   Semi-automated reconstruction of neural circuits using electron microscopy [J].
Chklovskii, Dmitri B. ;
Vitaladevuni, Shiv ;
Scheffer, Louis K. .
CURRENT OPINION IN NEUROBIOLOGY, 2010, 20 (05) :667-675