Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming

被引:12
|
作者
Birgin, E. G. [1 ]
Martinez, J. M. [2 ]
Prudente, L. F. [2 ]
机构
[1] Univ Sao Paulo, Dept Comp Sci, Inst Math & Stat, Sao Paulo, Brazil
[2] Univ Estadual Campinas, Dept Appl Math, Inst Math Stat & Sci Comp, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Deterministic global optimization; Augmented Lagrangians; Nonlinear programming; Algorithms; Numerical experiments; DIFFERENTIABLE CONSTRAINED NLPS; OPTIMIZATION ALGORITHM GOP; RLT-BASED APPROACH; ALPHA-BB; NONCONVEX NLPS; IMPLEMENTATION; CONVERGENCE; DUALITY;
D O I
10.1007/s10898-013-0039-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In a recent paper, Birgin, Floudas and Martinez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the BB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In the present research, the algorithm mentioned above will be improved in several crucial aspects. On the one hand, feasibility of the problem will not be required. Possible infeasibility will be detected in finite time by the new algorithms and optimal infeasibility results will be proved. On the other hand, finite termination results that guarantee optimality and/or feasibility up to any required precision will be provided. An adaptive modification in which subproblem tolerances depend on current feasibility and complementarity will also be given. The adaptive algorithm allows the augmented Lagrangian subproblems to be solved without requiring unnecessary potentially high precisions in the intermediate steps of the method, which improves the overall efficiency. Experiments showing how the new algorithms and results are related to practical computations will be given.
引用
收藏
页码:207 / 242
页数:36
相关论文
共 50 条
  • [1] Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming
    E. G. Birgin
    J. M. Martínez
    L. F. Prudente
    Journal of Global Optimization, 2014, 58 : 207 - 242
  • [2] Augmented Lagrangian methods for nonlinear programming with possible infeasibility
    Goncalves, M. L. N.
    Melo, J. G.
    Prudente, L. F.
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (02) : 297 - 318
  • [3] Augmented Lagrangian methods for nonlinear programming with possible infeasibility
    M. L. N. Gonçalves
    J. G. Melo
    L. F. Prudente
    Journal of Global Optimization, 2015, 63 : 297 - 318
  • [4] A class of augmented Lagrangians for equality constraints in nonlinear programming problems
    Du, XW
    Zhang, LS
    Gao, YL
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) : 644 - 663
  • [5] Minimax exactness and global saddle points of nonlinear augmented lagrangians
    Dolgopolik, Maksim V.
    Journal of Applied and Numerical Optimization, 2021, 3 (01): : 61 - 83
  • [6] Addressing the greediness phenomenon in Nonlinear Programming by means of Proximal Augmented Lagrangians
    Emerson V. Castelani
    André L. M. Martinez
    J. M. Martínez
    B. F. Svaiter
    Computational Optimization and Applications, 2010, 46 : 229 - 245
  • [7] Addressing the greediness phenomenon in Nonlinear Programming by means of Proximal Augmented Lagrangians
    Castelani, Emerson V.
    Martinez, Andre L. M.
    Martinez, J. M.
    Svaiter, B. F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (02) : 229 - 245
  • [8] Augmented Lagrangians in semi-infinite programming
    Ruckmann, Jan-J.
    Shapiro, Alexander
    MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) : 499 - 512
  • [9] Augmented Lagrangians in semi-infinite programming
    Jan-J. Rückmann
    Alexander Shapiro
    Mathematical Programming, 2009, 116 : 499 - 512
  • [10] Nonlinear programming algorithms using trust regions and augmented Lagrangians with nonmonotone penalty parameters
    Francisco A. M. Gomes
    María Cristina Maciel
    José Mario Martínez
    Mathematical Programming, 1999, 84 : 161 - 200