On the irreducibility of the Hilbert scheme of space curves

被引:13
作者
Iliev, Hristo [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
D O I
10.1090/S0002-9939-06-08516-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Denote by H-d,H-g,H-r the Hilbert scheme parametrizing smooth irreducible complex curves of degree d and genus g embedded in P-r. In 1921 Severi claimed that Hd, g, r is irreducible if d >= g + r. As it has turned out in recent years, the conjecture is true for r = 3 and 4, while for r = 6 it is incorrect. We prove that H-g,H-g,H-3, H-g+3,H-g,H-4 and H-g+2,H-g,H-4 are irreducible, provided that g >= 13, g >= 5 and g >= 11, correspondingly. This augments the results obtained previously by Ein (1986), (1987) and by Keem and Kim (1992).
引用
收藏
页码:2823 / 2832
页数:10
相关论文
共 10 条
[1]  
ARBARELLO E, 1983, ANN SCI ECOLE NORM S, V16, P467
[2]   ON A PETRI CONJECTURE [J].
ARBARELLO, E ;
CORNALBA, M .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (01) :1-38
[3]  
Arbarello E., 1985, GRUNDLEHREN MATH WIS, V267
[4]  
EIN L, 1987, P SYMP PURE MATH, V46, P83
[5]  
EIN L, 1986, ANN SCI ECOLE NORM S, V19, P469
[6]  
Hartshorne R., 1977, Graduate Texts in Mathematics
[7]   IRREDUCIBILITY OF A SUBSCHEME OF THE HILBERT SCHEME OF COMPLEX-SPACE CURVES [J].
KEEM, C ;
KIM, SJ .
JOURNAL OF ALGEBRA, 1992, 145 (01) :240-248
[8]   REDUCIBLE HILBERT SCHEME OF SMOOTH CURVES WITH POSITIVE BRILL-NOETHER NUMBER [J].
KEEM, CH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (02) :349-354
[9]   ON THE EXISTENCE OF CERTAIN FAMILIES OF CURVES [J].
SERNESI, E .
INVENTIONES MATHEMATICAE, 1984, 75 (01) :25-57
[10]  
SEVERI F., 1921, VORLESUNGEN ALGEBRAI