A QUANTUM WALK WITH A DELOCALIZED INITIAL STATE: CONTRIBUTION FROM A COIN-FLIP OPERATOR

被引:3
作者
Machida, Takuya [1 ,2 ]
机构
[1] Japan Soc Promot Sci, Tokyo, Japan
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
日本学术振兴会;
关键词
Limit distribution; 2-state quantum walk; delocalized initial state; LIMIT-THEOREMS; ONE-DIMENSION; LOCALIZATION;
D O I
10.1142/S0219749913500536
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A unit evolution step of discrete-time quantum walks (QWs) is determined by both a coin-fiip operator and a position-shift operator. The behavior of quantum walkers after many steps delicately depends on the coin-fiip operator and an initial condition of the walk. To get the behavior, a lot of long-time limit distributions for the QWs starting with a localized initial state have been derived. In this paper, we compute limit distributions of a 2-state QW with a delocalized initial state, not a localized initial state, and discuss how the walker depends on the coinip operator. The initial state induced from the Fourier series expansion, which is called the (alpha,beta) delocalized initial state in this paper, provides di erent limit density functions from the ones of the quantum walk with a localized initial state.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] Quantum walk on the line: Entanglement and nonlocal initial conditions
    Abal, G
    Siri, R
    Romanelli, A
    Donangelo, R
    [J]. PHYSICAL REVIEW A, 2006, 73 (04): : 1 - 9
  • [2] Effects of non-local initial conditions in the quantum walk on the line
    Abal, G.
    Donangelo, R.
    Romanelli, A.
    Siri, R.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 371 (01) : 1 - 4
  • [3] Optical Galton board
    Bouwmeester, D
    Marzoli, I
    Karman, GP
    Schleich, W
    Woerdman, JP
    [J]. PHYSICAL REVIEW A, 2000, 61 (01): : 9
  • [4] Discrete Single-Photon Quantum Walks with Tunable Decoherence
    Broome, M. A.
    Fedrizzi, A.
    Lanyon, B. P.
    Kassal, I.
    Aspuru-Guzik, A.
    White, A. G.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [5] Quantum walk on distinguishable non-interacting many-particles and indistinguishable two-particle
    Chandrashekar, C. M.
    Busch, Th
    [J]. QUANTUM INFORMATION PROCESSING, 2012, 11 (05) : 1287 - 1299
  • [6] Chisaki K, 2009, INTERDISCIPLINARY IN, V15, P423
  • [7] Chisaki K, 2012, QUANTUM INF COMPUT, V12, P314
  • [8] Chisaki K, 2011, QUANTUM INF COMPUT, V11, P741
  • [9] De Reyna J. A., 2002, POINTWISE CONVERGENC, V1785
  • [10] Alternate two-dimensional quantum walk with a single-qubit coin
    Di Franco, C.
    Mc Gettrick, M.
    Machida, T.
    Busch, Th.
    [J]. PHYSICAL REVIEW A, 2011, 84 (04):