On the spectrum-generating superalgebras of the deformed one-dimensional quantum oscillators

被引:4
作者
Aizawa, N. [1 ]
Cunha, I. E. [2 ]
Kuznetsova, Z. [3 ]
Toppan, F. [2 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Sci, Dept Phys Sci, Nakamozu Campus, Sakai, Osaka 5998531, Japan
[2] CBPF, Rua Doutor Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
[3] Univ Fed Abc, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil
关键词
GRADED LIE-ALGEBRAS; CLASSIFICATION; MECHANICS;
D O I
10.1063/1.5085164
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the dynamical symmetry superalgebras of the one-dimensional matrix superconformal quantum mechanics with inverse square potential. They act as spectrum-generating superalgebras for the systems with the addition of the de Alfaro-Fubini-Furlan oscillator term. The undeformed quantum oscillators are expressed by 2" x 2" supermatrices; their corresponding spectrum-generating superalgebras are given by the osp(2n vertical bar 2) series. For n = 1, the addition of an inverse-square potential does not break the osp(212) spectrum-generating superalgebra. For n = 2, two cases of inverse square potential deformations arise. The first one produces Klein deformed quantum oscillators; the corresponding spectrum generating superalgebras are given by the D(2, 1; alpha) class, with a determining the inverse square potential coupling constants. The second n = 2 case corresponds to deformed quantum oscillators of non-Klein type. In this case, the osp(4 vertical bar 2) spectrum-generating superalgebra of the undeformed theory is broken to osp(2 vertical bar 2). The choice of the Hilbert spaces corresponding to the admissible range of the inverse square potential coupling constants and the possible direct sum of lowest weight representations of the spectrum-generating superalgebras is presented. Published under license by AIP Publishing.
引用
收藏
页数:18
相关论文
共 35 条
[1]   The quasi-nonassociative exceptional F(4) deformed quantum oscillator [J].
Aizawa, N. ;
Kuznetsova, Z. ;
Toppan, F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[2]  
Britto-Pacumio R, 2001, NATO SCI SER II MATH, V564, P235
[3]   SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2191-&
[4]  
Carrion HL, 2003, J HIGH ENERGY PHYS
[5]   Conformal quantum mechanics as the CFT1 dual to AdS2 [J].
Chamon, Claudio ;
Jackiw, Roman ;
Pi, So-Young ;
Santos, Luiz .
PHYSICS LETTERS B, 2011, 701 (04) :503-507
[6]   From worldline to quantum superconformal mechanics with and without oscillatorial terms: D(2;1;α) and sl(2|1) models [J].
Cunha, I. E. ;
Holanda, N. L. ;
Toppan, F. .
PHYSICAL REVIEW D, 2017, 96 (06)
[7]   CONFORMAL INVARIANCE IN QUANTUM-MECHANICS [J].
DEALFARO, V ;
FUBINI, S ;
FURLAN, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 34 (04) :569-612
[8]   SUPERSYMMETRIC QUANTUM-MECHANICS [J].
DECROMBRUGGHE, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1983, 151 (01) :99-126
[9]   Multiparticle N=8 mechanics with F(4) superconformal symmetry [J].
Fedoruk, Sergey ;
Ivanov, Evgeny .
NUCLEAR PHYSICS B, 2019, 938 :714-735
[10]   Superconformal mechanics [J].
Fedoruk, Sergey ;
Ivanov, Evgeny ;
Lechtenfeld, Olaf .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (17)