DNA-PK is a DNA sensor for IRF-3-dependent innate immunity

被引:324
|
作者
Ferguson, Brian J. [1 ,2 ]
Mansur, Daniel S. [1 ]
Peters, Nicholas E. [1 ]
Ren, Hongwei [1 ,2 ]
Smith, Geoffrey L. [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Virol, London, England
[2] Univ Cambridge, Dept Pathol, Cambridge CB2 1QP, England
来源
ELIFE | 2012年 / 1卷
基金
英国医学研究理事会; 英国惠康基金;
关键词
DEPENDENT PROTEIN-KINASE; NEUTROPHIL EXTRACELLULAR TRAPS; INTRACELLULAR DNA; CYTOSOLIC DNA; V(D)J RECOMBINATION; AUTOIMMUNE-DISEASE; CYTOPLASMIC DNA; DAI DLM-1/ZBP1; MAMMALIAN DNA; IN-VIVO;
D O I
10.7554/eLife.00047
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Innate immunity is the first immunological defence against pathogens. During virus infection detection of nucleic acids is crucial for the inflammatory response. Here we identify DNA-dependent protein kinase (DNA-PK) as a DNA sensor that activates innate immunity. We show that DNA-PK acts as a pattern recognition receptor, binding cytoplasmic DNA and triggering the transcription of type I interferon (IFN), cytokine and chemokine genes in a manner dependent on IFN regulatory factor 3 (IRF-3), TANK-binding kinase 1 (TBK1) and stimulator of interferon genes (STING). Both cells and mice lacking DNA-PKcs show attenuated cytokine responses to both DNA and DNA viruses but not to RNA or RNA virus infection. DNA-PK has well-established functions in the DNA repair and V(D)J recombination, hence loss of DNA-PK leads to severe combined immunodeficiency (SCID). However, we now define a novel anti-microbial function for DNA-PK, a finding with implications for host defence, vaccine development and autoimmunity.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] DNA-PK: A synopsis beyond synapsis
    Goff, Noah J.
    Mikhova, Mariia
    Schmidt, Jens C.
    Meek, Katheryn
    DNA REPAIR, 2024, 141
  • [2] Targeting DNA-PK in cancer
    Damia, Giovanna
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2020, 821
  • [3] Coordination of DNA-PK Activation and Nuclease Processing of DNA Termini in NHEJ
    Pawelczak, Katherine S.
    Bennett, Sara M.
    Turchi, John J.
    ANTIOXIDANTS & REDOX SIGNALING, 2011, 14 (12) : 2531 - 2543
  • [4] ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response
    Blackford, Andrew N.
    Jackson, Stephen P.
    MOLECULAR CELL, 2017, 66 (06) : 801 - 817
  • [5] Beyond DNA Repair: DNA-PK Function in Cancer
    Goodwin, Jonathan F.
    Knudsen, Karen E.
    CANCER DISCOVERY, 2014, 4 (10) : 1126 - 1139
  • [6] Emerging roles of DNA-PK besides DNA repair
    Kong, Xianming
    Shen, Ying
    Jiang, Na
    Fei, Xin
    Mi, Jun
    CELLULAR SIGNALLING, 2011, 23 (08) : 1273 - 1280
  • [7] Cryo-EM structure of the DNA-PK holoenzyme
    Sharif, Humayun
    Li, Yang
    Dong, Yuanchen
    Dong, Liyi
    Wang, Wei Li
    Mao, Youdong
    Wu, Hao
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (28) : 7367 - 7372
  • [8] Visualization of a DNA-PK/PARP1 complex
    Spagnolo, Laura
    Barbeau, Jody
    Curtin, Nicola J.
    Morris, Edward P.
    Pearl, Laurence H.
    NUCLEIC ACIDS RESEARCH, 2012, 40 (09) : 4168 - 4177
  • [9] DNA Damage Triggers Golgi Dispersal via DNA-PK and GOLPH3
    Farber-Katz, Suzette E.
    Dippold, Holly C.
    Buschman, Matthew D.
    Peterman, Marshall C.
    Xing, Mengke
    Noakes, Christopher J.
    Tat, John
    Ng, Michelle M.
    Rahajeng, Juliati
    Cowan, David M.
    Fuchs, Greg J.
    Zhou, Huilin
    Field, Seth J.
    CELL, 2014, 156 (03) : 413 - 427
  • [10] DNA-PK suppresses a p53-independent apoptotic response to DNA damage
    Gurley, Kay E.
    Moser, Russell
    Gu, Yansong
    Hasty, Paul
    Kemp, Christopher J.
    EMBO REPORTS, 2009, 10 (01) : 87 - 93