Marine Sediment Characterized by Ocean-Bottom Fiber-Optic Seismology

被引:70
作者
Spica, Zack J. [1 ,2 ]
Nishida, Kiwamu [2 ]
Akuhara, Takeshi [2 ]
Petrelis, Francois [2 ,3 ]
Shinohara, Masanao [2 ]
Yamada, Tomoaki [2 ,4 ]
机构
[1] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA
[2] Univ Tokyo, Earthquake Res Inst, Tokyo, Japan
[3] Univ Paris Diderot, Sorbonne Univ, Univ PSL, Ecole Normale Suprer,ENS,Lab Phys,CNRS,Sorbonne P, Paris, France
[4] Japan Meteorol Agcy, Tokyo, Japan
关键词
ambient noise</AUTHOR_KEYWORD>; DAS</AUTHOR_KEYWORD>; fiber optic</AUTHOR_KEYWORD>; marine geophysics</AUTHOR_KEYWORD>; ocean bottom</AUTHOR_KEYWORD>; velocity model</AUTHOR_KEYWORD>; SEISMIC NOISE; P-WAVE; RECEIVER FUNCTIONS; STRUCTURE BENEATH; NEAR-SURFACE; AUTOCORRELATION; INVERSION; DEPTH; BASIN; ZONE;
D O I
10.1029/2020GL088360
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Sanriku ocean-bottom seismometer system uses an optical fiber cable to guarantee real-time observations at the seafloor. A dark fiber connected to a Distributed Acoustic Sensing (DAS) interrogator converted the cable in an array of 19,000 seismic sensors. We use these measurements to constrain the velocity structure under a section of the cable. Our analysis relies on 24 hr of ambient seismic field recordings. We obtain a high-resolution 2-D shear-wave velocity profile by inverting multimode dispersion curves extracted from frequency-wave number analysis. We also produce a reflection image from autocorrelations of ambient seismic field, highlighting strong impedance contrasts at the interface between the sedimentary layers and the basement. In addition, earthquake wavefield analysis and modeling help to further constrain the sediment properties under the cable. Our results show for the first time that ocean-bottom DAS can produce detailed images of the subsurface, opening new opportunities for cost-effective ocean-bottom imaging in the future.
引用
收藏
页数:10
相关论文
共 64 条
[1]  
Akal T., 2013, OCEAN SEISMO ACOUSTI, V16
[2]   Beyond Receiver Functions: Green's Function Estimation by Transdimensional Inversion and Its Application to OBS Data [J].
Akuhara, Takeshi ;
Bostock, Michael G. ;
Plourde, Alexandre P. ;
Shinohara, Masanao .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2019, 124 (02) :1944-1961
[3]  
[Anonymous], 1982, INT GEOPHYS SERIES
[4]   Ocean wave sources of seismic noise [J].
Ardhuin, Fabrice ;
Stutzmann, Eleonore ;
Schimmel, Martin ;
Mangeney, Anne .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
[5]   Relationship between P- and S-wave velocities and geological properties of near-surface sediments of the continental slope of the Barents Sea [J].
Ayres, A ;
Theilen, F .
GEOPHYSICAL PROSPECTING, 1999, 47 (04) :431-441
[6]   ObsPy: A Python']Python Toolbox for Seismology [J].
Beyreuther, Moritz ;
Barsch, Robert ;
Krischer, Lion ;
Megies, Tobias ;
Behr, Yannik ;
Wassermann, Joachim .
SEISMOLOGICAL RESEARCH LETTERS, 2010, 81 (03) :530-533
[7]   Teleseismic correlations of ambient seismic noise for deep global imaging of the Earth [J].
Boue, P. ;
Poli, P. ;
Campillo, M. ;
Pedersen, H. ;
Briand, X. ;
Roux, P. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 194 (02) :844-848
[8]   Crustal structure beneath Tierra del Fuego, Argentina, inferred from seismic P-wave receiver functions and ambient noise autocorrelations [J].
Buffoni, Carolina ;
Schimmel, Martin ;
Cristina Sabbione, Nora ;
Laura Rosa, Maria ;
Connon, Gerardo .
TECTONOPHYSICS, 2019, 751 :41-53
[9]  
Cedilnik G., 2019, 10 INT C INS POW CAB
[10]   SYNTHESIS OF A LAYERED MEDIUM FROM ITS ACOUSTIC TRANSMISSION RESPONSE [J].
CLAERBOUT, JF .
GEOPHYSICS, 1968, 33 (02) :264-+