Improving MCMC, using efficient importance sampling

被引:13
作者
Liesenfeld, Roman [1 ]
Richard, Jean-Francois [2 ]
机构
[1] Univ Kiel, Dept Econ, D-24118 Kiel, Germany
[2] Univ Pittsburgh, Dept Econ, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.csda.2008.07.028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A generic Markov Chain Monte Carlo (MCMC) framework, based upon Efficient Importance Sampling (EIS) is developed, which can be used for the analysis of a wide range of econometric models involving integrals without analytical solution. EIS is a simple, generic and yet accurate Monte-Carlo integration procedure based on sampling densities which are global approximations to the integrand. By embedding EIS within MCMC procedures based on Metropolis-Hastings (MH) one can significantly improve their numerical properties, essentially by providing a fully automated selection of critical MCMC components, such as auxiliary sampling densities, normalizing constants and starting values. The potential of this integrated MCMC-EIS approach is illustrated with simple univariate integration problems, and with the Bayesian posterior analysis of stochastic volatility models and stationary autoregressive processes. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:272 / 288
页数:17
相关论文
共 31 条
[1]  
[Anonymous], 1979, TABLE INTEGRALS SERI
[2]  
BAUWENS L, 2005, COMPUTATION IN PRESS
[3]  
Bauwens L., 2006, Journal of Financial Econometrics, V4, P450
[4]  
CARTER CK, 1994, BIOMETRIKA, V81, P541
[5]   Markov chain Monte Carlo methods for stochastic volatility models [J].
Chib, S ;
Nardari, F ;
Shephard, N .
JOURNAL OF ECONOMETRICS, 2002, 108 (02) :281-316
[6]   BAYES INFERENCE IN REGRESSION-MODELS WITH ARMA (P, Q) ERRORS [J].
CHIB, S ;
GREENBERG, E .
JOURNAL OF ECONOMETRICS, 1994, 64 (1-2) :183-206
[7]   UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM [J].
CHIB, S ;
GREENBERG, E .
AMERICAN STATISTICIAN, 1995, 49 (04) :327-335
[8]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[9]   BAYESIAN-INFERENCE IN ECONOMETRIC-MODELS USING MONTE-CARLO INTEGRATION [J].
GEWEKE, J .
ECONOMETRICA, 1989, 57 (06) :1317-1339
[10]  
Geweke John., 1999, ECONOMET REV, V18, P1, DOI DOI 10.1080/07474939908800428