Road User Abnormal Trajectory Detection Using a Deep Autoencoder

被引:5
作者
Roy, Pankaj Raj [1 ]
Bilodeau, Guillaume-Alexandre [1 ]
机构
[1] Polytech Montreal, LITIV Lab, Dept Comp & Software Engn, Montreal, PQ, Canada
来源
ADVANCES IN VISUAL COMPUTING, ISVC 2018 | 2018年 / 11241卷
关键词
Deep autoencoder; Unsupervised learning; Data augmentation; Abnormal trajectory detection; EVENT DETECTION;
D O I
10.1007/978-3-030-03801-4_65
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we focus on the development of a method that detects abnormal trajectories of road users at traffic intersections. The main difficulty with this is the fact that there are very few abnormal data and the normal ones are insufficient for the training of any kinds of machine learning model. To tackle these problems, we proposed the solution of using a deep autoencoder network trained solely through augmented data considered as normal. By generating artificial abnormal trajectories, our method is tested on four different outdoor urban users scenes and performs better compared to some classical outlier detection methods.
引用
收藏
页码:748 / 757
页数:10
相关论文
共 13 条
  • [1] Benezeth Y, 2009, PROC CVPR IEEE, P2450
  • [2] Jodoin JP, 2014, IEEE WINT CONF APPL, P885, DOI 10.1109/WACV.2014.6836010
  • [3] Isolation Forest
    Liu, Fei Tony
    Ting, Kai Ming
    Zhou, Zhi-Hua
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 413 - +
  • [4] Abnormal Event Detection at 150 FPS in MATLAB
    Lu, Cewu
    Shi, Jianping
    Jia, Jiaya
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 2720 - 2727
  • [5] MAHADEVAN V, 2010, PROC CVPR IEEE, P1975, DOI DOI 10.1109/CVPR.2010.5539872
  • [6] Analyzing Tracklets for the Detection of Abnormal Crowd Behavior
    Mousavi, Hossein
    Mohammadi, Sadegh
    Perina, Alessandro
    Chellali, Ryad
    Murino, Vittorio
    [J]. 2015 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2015, : 148 - 155
  • [7] Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
  • [8] A review of novelty detection
    Pimentel, Marco A. F.
    Clifton, David A.
    Clifton, Lei
    Tarassenko, Lionel
    [J]. SIGNAL PROCESSING, 2014, 99 : 215 - 249
  • [9] A study of deep convolutional auto-encoders for anomaly detection in videos
    Ribeiro, Manasses
    Lazzaretti, Andre Eugenio
    Lopes, Heitor Silverio
    [J]. PATTERN RECOGNITION LETTERS, 2018, 105 : 13 - 22
  • [10] Estimating the support of a high-dimensional distribution
    Schölkopf, B
    Platt, JC
    Shawe-Taylor, J
    Smola, AJ
    Williamson, RC
    [J]. NEURAL COMPUTATION, 2001, 13 (07) : 1443 - 1471