Adsorption of Polycyclic Aromatic Hydrocarbons on Graphene Oxides and Reduced Graphene Oxides

被引:166
作者
Sun, Yubing [2 ]
Yang, Shubin [2 ]
Zhao, Guixia [2 ]
Wang, Qi [2 ]
Wang, Xiangke [1 ,3 ]
机构
[1] Soochow Univ, Sch Radiol & Interdisciplinary Sci, Suzhou 215123, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Key Lab Novel Thin Film Solar Cells, Hefei 230031, Peoples R China
[3] Soochow Univ, Sch Radiol & Interdisciplinary Sci, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
adsorption; graphene; hydrocarbons; reaction mechanisms; surface chemistry; SOLVATION ENERGY RELATIONSHIPS; WALLED CARBON NANOTUBES; ORGANIC-COMPOUNDS; COMPETITIVE SORPTION; ENHANCED SORPTION; PYRENE SORPTION; GRAPHITE OXIDE; HUMIC-ACID; WATER; SURFACE;
D O I
10.1002/asia.201300496
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high-temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi-Dubinin-Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmolg(-1)) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore-filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption.
引用
收藏
页码:2755 / 2761
页数:7
相关论文
共 66 条
[1]   Native polycyclic aromatic hydrocarbons (PAH) in coals - A hardly recognized source of environmental contamination [J].
Achten, C. ;
Hofmann, T. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (08) :2461-2473
[2]   Phenanthrene and pyrene sorption and intraparticle diffusion in polyoxymethylene, coke, and activated carbon [J].
Ahn, S ;
Werner, D ;
Karapanagioti, HK ;
McGlothlin, DR ;
Zare, RN ;
Luthy, RG .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (17) :6516-6526
[3]   The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: A review [J].
Arfsten, DP ;
Schaeffer, DJ ;
Mulveny, DC .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 1996, 33 (01) :1-24
[4]   LONG-TERM SORPTION OF HALOGENATED ORGANIC-CHEMICALS BY AQUIFER MATERIAL .1. EQUILIBRIUM [J].
BALL, WP ;
ROBERTS, PV .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (07) :1223-1237
[5]  
Binder K., 1995, MONTE CARLO MOL DYNA
[6]   Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations [J].
Bucheli, TD ;
Gustafsson, Ö .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (24) :5144-5151
[7]   Anisotropy of the Raman spectra of nanographite ribbons -: art. no. 047403 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Medeiros-Ribeiro, G ;
Enoki, T ;
Kobayashi, Y ;
Takai, K ;
Fukui, K ;
Dresselhaus, MS ;
Saito, R ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (04) :047403-1
[8]   Binding of polycyclic aromatic hydrocarbons and graphene dimers in density functional theory [J].
Chakarova-Kack, Svetla D. ;
Vojvodic, Aleksandra ;
Kleis, Jesper ;
Hyldgaard, Per ;
Schroder, Elsebeth .
NEW JOURNAL OF PHYSICS, 2010, 12
[9]   Pyrene sorption by natural organic matter [J].
Chefetz, B ;
Deshmukh, AP ;
Hatcher, PG ;
Guthrie, EA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (14) :2925-2930
[10]   Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: Effects of aqueous solution chemistry [J].
Chen, Junyi ;
Chen, Wei ;
Zhu, Dongqiang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (19) :7225-7230