Approximation of Solitons in the Discrete NLS Equation

被引:14
作者
Cuevas, Jesus [1 ]
James, Guillaume [2 ]
Kevrekidis, Panayotis G. [3 ]
Malomed, Boris A. [4 ]
Sanchez-Rey, Bernardo [1 ]
机构
[1] EU Politecn, Dept Fis Aplicada 1, Grp Fis No Lineal, Seville 41011, Spain
[2] INSA Toulouse, UMR 5219, Inst Math Toulouse, F-31077 Toulouse 4, France
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
关键词
D O I
10.2991/jnmp.2008.15.s3.13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study four different approximations for finding the profile of discrete solitons in the one-dimensional Discrete Nonlinear Schrodinger (DNLS) Equation. Three of them are discrete approximations (namely, a variational approach, an approximation to homoclinic orbits and a Green-function approach), and the other one is a quasi-continuum approximation. All the results are compared with numerical computations.
引用
收藏
页码:124 / 136
页数:13
相关论文
共 37 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[3]   On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation [J].
Alfimov, GL ;
Brazhnyi, VA ;
Konotop, VV .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) :127-150
[4]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[5]   Discrete Breathers: Localization and transfer of energy in discrete Hamiltonian nonlinear systems [J].
Aubry, S. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :1-30
[6]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[7]   Multibreathers and homoclinic orbits in 1-dimensional nonlinear lattices [J].
Bountis, T ;
Capel, HW ;
Kollmann, M ;
Ross, JC ;
Bergamin, JM ;
van der Weele, JP .
PHYSICS LETTERS A, 2000, 268 (1-2) :50-60
[8]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[9]   Localizing energy through nonlinearity and discreteness [J].
Campbell, DK ;
Flach, S ;
Kivshar, YS .
PHYSICS TODAY, 2004, 57 (01) :43-49
[10]   Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation [J].
Carretero-Gonzalez, R. ;
Talley, J. D. ;
Chong, C. ;
Malomed, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :77-89