Dietary Genistein Inhibits Methylglyoxal-Induced Advanced Glycation End Product Formation in Mice Fed a High-Fat Diet

被引:37
|
作者
Zhao, Yantao [1 ]
Wang, Pei [1 ]
Sang, Shengmin [1 ]
机构
[1] North Carolina Agr & Tech State Univ, Lab Funct Foods & Human Hlth, Ctr Excellence Postharvest Technol, Kannapolis, NC 28081 USA
来源
JOURNAL OF NUTRITION | 2019年 / 149卷 / 05期
关键词
advanced glycation end product; methylglyoxal; genistein; detoxification pathways; metabolic syndrome; METABOLIC SYNDROME; TRAPPING METHYLGLYOXAL; TEA POLYPHENOL; ENDPRODUCTS; OBESITY; (-)-EPIGALLOCATECHIN-3-GALLATE; ACTIVATION; RECEPTOR; ACID; AGES;
D O I
10.1093/jn/nxz017
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Background: Methylglyoxal (MGO), an important precursor of advanced glycation end products (AGEs), circulates at high concentrations in diabetic patients' blood and plays an important role in the pathogenesis of diabetes and other chronic diseases. Objectives: The aim of this study was to determine whether dietary genistein can prevent indicators of metabolic syndrome (MetS) induced by a very-high-fat (VHF) diet or a high-fat (HF) diet plus exogenous MGO, and the accumulation of MGO and AGEs in mice. Methods: Male, 6-wk-old C57BL/6J mice (n = 15) were fed a low-fat (LF) diet (10% fat energy) or a VHF diet (60% fat energy) alone or including 0.25% genistein (VHF-G) for 16 wk in study 1. In study 2, 75 similar mice were fed the LF diet (LF) or the HF diet alone (HF) or in combination with up to 0.2% MGO in water (HFM) and 0.067% (HFM-GL) or 0.2% (HFM-GH) dietary genistein for 18 wk. Anthropometric and metabolic data were obtained in both studies to determine the effects of MGO and genistein on variables indicative of MetS. Results: Body weight gain, fat deposits, dyslipidemia, hyperglycemia, and fatty liver were ameliorated by dietary genistein in both studies. The plasma MGO concentration in VHF-G mice was 52% lower than that in VHF mice. Moreover, the AGE concentrations in plasma, liver, and kidney of VHF-G mice were 73%, 52%, and 49%, respectively, lower than in the VHF group (study 1). Similarly, the concentrations of plasma MGO and AGE in plasma, liver, and kidney of HFM-GHmicewere 33.5%, 49%, 69%, and 54% lower than in HFM mice (study 2). Genistein inhibited AGE formation by trapping MGO to form adducts and upregulating the expressions of glyoxalase I and II and aldose reductase in liver and kidney to detoxify MGO in both studies. Conclusions: Our data demonstrate for the first time that genistein significantly lowers MGO and AGE concentrations in 2 mouse MetS models via multiple pathways.
引用
收藏
页码:776 / 787
页数:12
相关论文
共 50 条
  • [1] Dietary genistein inhibits methylglyoxal-induced advanced glycation end products formation in high-fat diet-fed mice
    Zhao, Yantao
    Wang, Pei
    Sang, Shengmin
    FASEB JOURNAL, 2017, 31
  • [2] Dietary genistein ameliorates high-fat plus methylglyoxal-induced advanced glycation end products formation in mice
    Zhao, Yantao
    Wang, Pei
    Sang, Shengmin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [3] Dietary Genistein Reduces Methylglyoxal and Advanced Glycation End Product Accumulation in Obese Mice Treated with High-Fat Diet
    Zhao, Yantao
    Zhu, Yingdong
    Wang, Pei
    Sang, Shengmin
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (28) : 7416 - 7424
  • [4] Dietary quercetin inhibits methylglyoxal-induced advanced glycation end products formation in mice
    Zhao, Yantao
    Wang, Pei
    Chen, Huadong
    Sang, Shengmin
    FASEB JOURNAL, 2016, 30
  • [5] Genistein Inhibits Advanced Glycation End Product Formation by Trapping Methylglyoxal
    Lv, Lishuang
    Shao, Xi
    Chen, Huadong
    Ho, Chi-Tang
    Sang, Shengmin
    CHEMICAL RESEARCH IN TOXICOLOGY, 2011, 24 (04) : 579 - 586
  • [6] Diphlorethohydroxycarmalol Attenuates Methylglyoxal-Induced Oxidative Stress and Advanced Glycation End Product Formation in Human Kidney Cells
    Cha, Seon-Heui
    Hwang, Yongha
    Heo, Soo-Jin
    Jun, Hee-Sook
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2018, 2018
  • [8] Quercetin Inhibits Advanced Glycation End Product Formation by Trapping Methylglyoxal and Glyoxal
    Li, Xiaoming
    Zheng, Tiesong
    Sang, Shengmin
    Lv, Lishuang
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2014, 62 (50) : 12152 - 12158
  • [9] Pioglitazone alleviates inflammation in diabetic mice fed a high-fat diet via inhibiting advanced glycation end-product-induced classical macrophage activation
    Jin, Xian
    Liu, Liang
    Zhou, Zhong'e
    Ge, Junhua
    Yao, Tongqing
    Shen, Chengxing
    FEBS JOURNAL, 2016, 283 (12) : 2295 - 2308
  • [10] Genistein alleviates neurodegeneration in ApoE-/- mice fed a high-fat diet
    Kwon, Young Hye
    Park, Youn-Jin
    Jeon, Sookyoung
    FASEB JOURNAL, 2013, 27