Nanogap Engineered Plasmon-Enhancement in Photocatalytic Solar Hydrogen Conversion

被引:61
作者
Chen, Jie [1 ]
Dong, Chung-Li [2 ]
Du, Yuanchang [1 ]
Zhao, Daming [1 ]
Shen, Shaohua [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Int Res Ctr Renewable Energy, Xian 710049, Shaanxi, Peoples R China
[2] Tamkang Univ, Dept Phys, New Taipei 25137, Taiwan
基金
中国国家自然科学基金;
关键词
CARBON NITRIDE SEMICONDUCTORS; ENERGY-TRANSFER; POLYOL PROCESS; WATER; G-C3N4; NANOPARTICLES; METAL; NANOSTRUCTURES; GENERATION; REDUCTION;
D O I
10.1002/admi.201500280
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphitic carbon nitride modified with plasmonic Ag@SiO2 core-shell nanoparticles (g-C3N4/Ag@SiO2) are proposed for enhanced photocatalytic solar hydrogen evolution under visible light. Nanosized gaps between the plasmonic Ag nanoparticles (NPs) and g-C3N4 are created and precisely modulated to be 8, 12, 17, and 21 nm by coating SiO2 shells on the Ag NPs. The optimized photocatalytic hydrogen production activity for g-C3N4/Ag@SiO2 is achieved with a nanogap of 12 nm (11.4 mu mol h(-1)) to be more than twice as high as that of pure g-C3N4 (5.6 mu mol h(-1)). The plasmon resonance energy transfer (PRET) effect of Ag NPs is innovatively proved from a physical view on polymer semiconductors for photoredox catalysis. The PRET effect favors the charge carrier separation by inducing electron-hole pairs efficiently formed in the near-surface region of g-C3N4. Furthermore, via engineering the width of the nanogap, the PRET and energy-loss Forster resonance energy transfer processes are perfectly balanced, resulting in considerable enhancement of photocatalytic hydrogen production activity over the g-C3N4/Ag@SiO2 plasmonic photocatalyst.
引用
收藏
页数:11
相关论文
共 66 条
[1]   A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide [J].
Awazu, Koichi ;
Fujimaki, Makoto ;
Rockstuhl, Carsten ;
Tominaga, Junji ;
Murakami, Hirotaka ;
Ohki, Yoshimichi ;
Yoshida, Naoya ;
Watanabe, Toshiya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (05) :1676-1680
[2]  
Bohren C. F., 1998, Absorption and Scattering of Light by Small Particles
[3]   Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes [J].
Chen, Hao Ming ;
Chen, Chih Kai ;
Tseng, Ming Lun ;
Wu, Pin Chieh ;
Chang, Chia Min ;
Cheng, Liang-Chien ;
Huang, Hsin Wei ;
Chan, Ting Shan ;
Huang, Ding-Wei ;
Liu, Ru-Shi ;
Tsai, Din Ping .
SMALL, 2013, 9 (17) :2926-2936
[4]   Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X-ray Absorption Approach to Electronic Structures [J].
Chen, Hao Ming ;
Chen, Chih Kai ;
Chen, Chih-Jung ;
Cheng, Liang-Chien ;
Wu, Pin Chieh ;
Cheng, Bo Han ;
Ho, You Zhe ;
Tseng, Ming Lun ;
Hsu, Ying-Ya ;
Chan, Ting-Shan ;
Lee, Jyh-Fu ;
Liu, Ru-Shi ;
Tsai, Din Ping .
ACS NANO, 2012, 6 (08) :7362-7372
[5]   Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production [J].
Chen, Jie ;
Shen, Shaohua ;
Wu, Po ;
Guo, Liejin .
GREEN CHEMISTRY, 2015, 17 (01) :509-517
[6]   In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production [J].
Chen, Jie ;
Shen, Shaohua ;
Guo, Penghui ;
Wang, Meng ;
Wu, Po ;
Wang, Xixi ;
Guo, Liejin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 152 :335-341
[7]   Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity [J].
Chen, Jie ;
Shen, Shaohua ;
Guo, Penghui ;
Wang, Meng ;
Su, Jinzhan ;
Zhao, Daming ;
Guo, Liejin .
JOURNAL OF MATERIALS RESEARCH, 2014, 29 (01) :64-70
[8]   Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation [J].
Chen, Jie ;
Shen, Shaohua ;
Guo, Penghui ;
Wu, Po ;
Guo, Liejin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (13) :4605-4612
[9]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[10]   Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis [J].
Cui, Yanjuan ;
Ding, Zhengxin ;
Fu, Xianzhi ;
Wang, Xinchen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (47) :11814-11818