The efficiency of approximating real numbers by Luroth expansion

被引:21
作者
Cao, Chunyun [1 ]
Wu, Jun [1 ]
Zhang, Zhenliang [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Henan Inst Sci & Technol, Sch Math Sci, Xinxiang 453003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Luroth expansion; optimal approximation; Hausdorff dimension; DIMENSION; SERIES; SETS;
D O I
10.1007/s10587-013-0033-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any x epsilon (0, 1], let x=1/d(1) + 1/d(1)(d(1)-1)d(2) + ... + 1/d(1)(d(1)-1)...d(n)-1(d(n-1) -1)d(n) +... be its Luroth expansion. Denote by P-n(x)/Q(n)(x) the partial sum of the first n terms in the above series and call it the nth convergent of x in the Luroth expansion. This paper is concerned with the efficiency of approximating real numbers by their convergents {P-n(x)/Q(n)(x)}(n >= 1) in the Luroth expansion. It is shown that almost no points can have convergents as the optimal approximation for infinitely many times in the Luroth expansion. Consequently, Hausdorff dimension is introduced to quantify the set of real numbers which can be well approximated by their convergents in the Luroth expansion, namely the following Jarnik-like set: {x epsilon (0, 1]: vertical bar x - P-n(x)/Q(n)(x)vertical bar < 1/Q(n)(x)(nu+1) infinitely often} for any nu >= 1.
引用
收藏
页码:497 / 513
页数:17
相关论文
共 16 条
[1]   Frequency of digits in the Luroth expansion [J].
Barreira, Luis ;
Iommi, Godofredo .
JOURNAL OF NUMBER THEORY, 2009, 129 (06) :1479-1490
[2]  
Barrionuevo J, 1996, ACTA ARITH, V74, P311
[3]  
Dajani K., 2002, Carus Mathematical Monographs, V29
[4]  
DAJANI K., 1996, J. Theor. Nombres Bordeaux, V8, P331
[5]  
Falconer K., 1997, Techniques in Fractal Geometry
[6]   Dimension of Besicovitch-Eggleston sets in countable symbolic space [J].
Fan, Aihua ;
Liao, Lingmin ;
Ma, Jihua ;
Wang, Baowei .
NONLINEARITY, 2010, 23 (05) :1185-1197
[7]  
GALAMBOS J., 1976, Lecture Notes in Math., V502
[8]  
JAGER H, 1969, NEDERL AKAD WET P A, V72, P31
[9]   Strong renewal theorems and Lyapunov spectra for α-Farey and α-Luroth systems [J].
Kesseboehmer, Marc ;
Munday, Sara ;
Stratmann, Bernd O. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 :989-1017
[10]  
Khintchine A.Ya., 1963, Continued Fractions