High-Dimensional Linear Models: A Random Matrix Perspective

被引:1
|
作者
Namdari, Jamshid [1 ]
Paul, Debashis [1 ]
Wang, Lili [2 ]
机构
[1] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[2] Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou, Peoples R China
关键词
Multivariate statistics; linear models; random matrix theory; Primary; 62; LIMITING SPECTRAL DISTRIBUTION; SAMPLE COVARIANCE MATRICES; WALD MEMORIAL LECTURES; MULTIVARIATE-ANALYSIS; AUTOCOVARIANCE MATRICES; UNDERLYING DISTRIBUTION; EMPIRICAL DISTRIBUTION; LARGEST EIGENVALUE; FEWER OBSERVATIONS; ROBUST REGRESSION;
D O I
10.1007/s13171-020-00219-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Professor C.R.Rao'sLinear Statistical Inferenceis a classic that has motivated several generations of statisticians in their pursuit of theoretical research. This paper looks into some of the fundamental problems associated with linear models, but in a scenario where the dimensionality of the observations is comparable to the sample size. This perspective, largely driven by contemporary advancements in random matrix theory, brings new insights and results that can be helpful even for solving relatively low-dimensional problems. This overview also brings into focus the fundamental roles played by the eigenvalues of large covariance-type matrices in the theory of high-dimensional multivariate statistics.
引用
收藏
页码:645 / 695
页数:51
相关论文
共 50 条
  • [31] Noise Level Estimation in High-Dimensional Linear Models
    Golubev, G. K.
    Krymova, E. A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2018, 54 (04) : 351 - 371
  • [32] Tests for high-dimensional partially linear regression models
    Shi, Hongwei
    Yang, Weichao
    Sun, Bowen
    Guo, Xu
    STATISTICAL PAPERS, 2025, 66 (03)
  • [33] Spatially relaxed inference on high-dimensional linear models
    Jérôme-Alexis Chevalier
    Tuan-Binh Nguyen
    Bertrand Thirion
    Joseph Salmon
    Statistics and Computing, 2022, 32
  • [34] Empirical likelihood for high-dimensional linear regression models
    Hong Guo
    Changliang Zou
    Zhaojun Wang
    Bin Chen
    Metrika, 2014, 77 : 921 - 945
  • [35] Empirical likelihood for high-dimensional linear regression models
    Guo, Hong
    Zou, Changliang
    Wang, Zhaojun
    Chen, Bin
    METRIKA, 2014, 77 (07) : 921 - 945
  • [36] Spatially relaxed inference on high-dimensional linear models
    Chevalier, Jerome-Alexis
    Nguyen, Tuan-Binh
    Thirion, Bertrand
    Salmon, Joseph
    STATISTICS AND COMPUTING, 2022, 32 (05)
  • [37] High-dimensional robust inference for censored linear models
    Jiayu Huang
    Yuanshan Wu
    ScienceChina(Mathematics), 2024, 67 (04) : 891 - 918
  • [38] A Bayesian-motivated test for high-dimensional linear regression models with fixed design matrix
    Wang, Rui
    Xu, Xingzhong
    STATISTICAL PAPERS, 2021, 62 (04) : 1821 - 1852
  • [39] A Bayesian-motivated test for high-dimensional linear regression models with fixed design matrix
    Rui Wang
    Xingzhong Xu
    Statistical Papers, 2021, 62 : 1821 - 1852
  • [40] HYPOTHESIS TESTING ON LINEAR STRUCTURES OF HIGH-DIMENSIONAL COVARIANCE MATRIX
    Zheng, Shurong
    Chen, Zhao
    Cui, Hengjian
    Li, Runze
    ANNALS OF STATISTICS, 2019, 47 (06): : 3300 - 3334