High-Dimensional Linear Models: A Random Matrix Perspective

被引:1
|
作者
Namdari, Jamshid [1 ]
Paul, Debashis [1 ]
Wang, Lili [2 ]
机构
[1] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[2] Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou, Peoples R China
关键词
Multivariate statistics; linear models; random matrix theory; Primary; 62; LIMITING SPECTRAL DISTRIBUTION; SAMPLE COVARIANCE MATRICES; WALD MEMORIAL LECTURES; MULTIVARIATE-ANALYSIS; AUTOCOVARIANCE MATRICES; UNDERLYING DISTRIBUTION; EMPIRICAL DISTRIBUTION; LARGEST EIGENVALUE; FEWER OBSERVATIONS; ROBUST REGRESSION;
D O I
10.1007/s13171-020-00219-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Professor C.R.Rao'sLinear Statistical Inferenceis a classic that has motivated several generations of statisticians in their pursuit of theoretical research. This paper looks into some of the fundamental problems associated with linear models, but in a scenario where the dimensionality of the observations is comparable to the sample size. This perspective, largely driven by contemporary advancements in random matrix theory, brings new insights and results that can be helpful even for solving relatively low-dimensional problems. This overview also brings into focus the fundamental roles played by the eigenvalues of large covariance-type matrices in the theory of high-dimensional multivariate statistics.
引用
收藏
页码:645 / 695
页数:51
相关论文
共 50 条
  • [11] Simultaneous Inference for High-Dimensional Linear Models
    Zhang, Xianyang
    Cheng, Guang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 757 - 768
  • [12] Statistical significance in high-dimensional linear models
    Buehlmann, Peter
    BERNOULLI, 2013, 19 (04) : 1212 - 1242
  • [13] Variance estimation in high-dimensional linear models
    Dicker, Lee H.
    BIOMETRIKA, 2014, 101 (02) : 269 - 284
  • [14] High-dimensional inference in misspecified linear models
    Buehlmann, Peter
    van de Geer, Sara
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 1449 - 1473
  • [15] An iterative matrix uncertainty selector for high-dimensional generalized linear models with measurement errors
    Fesuh Nono, Betrand
    Nguefack-Tsague, Georges
    Kegnenlezom, Martin
    Nguema, Eugene-Patrice N.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2025,
  • [16] Linear Hypothesis Testing in Dense High-Dimensional Linear Models
    Zhu, Yinchu
    Bradic, Jelena
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1583 - 1600
  • [17] RANDOM MATRIX-OPTIMIZED HIGH-DIMENSIONAL MVDR BEAMFORMING
    Yang, Liusha
    McKay, Matthew
    Couillet, Romain
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 473 - 477
  • [18] High-dimensional robust inference for censored linear models
    Jiayu Huang
    Yuanshan Wu
    Science China Mathematics, 2024, 67 : 891 - 918
  • [19] Shrinkage and Sparse Estimation for High-Dimensional Linear Models
    Asl, M. Noori
    Bevrani, H.
    Belaghi, R. Arabi
    Ahmed, Syed Ejaz
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 147 - 156
  • [20] Noise Level Estimation in High-Dimensional Linear Models
    G. K. Golubev
    E. A. Krymova
    Problems of Information Transmission, 2018, 54 : 351 - 371