Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex

被引:59
作者
Laurini, Erik [1 ]
Marson, Domenico [1 ]
Aulic, Suzana [1 ]
Fermeglia, Maurizio [1 ]
Pricl, Sabrina [1 ,2 ]
机构
[1] Univ Trieste, Mol Biol & Nanotechnol Lab MolBNL UniTS, DEA, I-34127 Trieste, Italy
[2] Univ Lodz, Fac Biol & Environm Protect, Dept Gen Biophys, PL-90136 Lodz, Poland
关键词
SARS-CoV-2 spike protein; ACE2; receptor-binding domain; molecular dynamics; computational alanine-scanning mutagenesis; molecular mechanics/Poisson-Boltzmann surface area; free energy of binding; INTERACTION ENTROPY; KIT MUTATIONS; BCR-ABL; INHIBITOR; RECEPTOR; RESISTANCE; BINDING; GIST; DASATINIB; MECHANISM;
D O I
10.1021/acsnano.0c04674
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The recent emergence of the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the coronavirus disease 2019 (COVID-19), is causing a global pandemic that poses enormous challenges to global public health and economies. SARS-CoV-2 host cell entry is mediated by the interaction of the viral transmembrane spike glycoprotein (S-protein) with the angiotensin-converting enzyme 2 gene (ACE2), an essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis. Accordingly, this work reports an atomistic-based, reliable in silico structural and energetic framework of the interactions between the receptor-binding domain of the SARS-CoV-2 S-protein and its host cellular receptor ACE2 that provides qualitative and quantitative insights into the main molecular determinants in virus/receptor recognition. In particular, residues D38, K31, E37, K353, and Y41 on ACE2 and Q498, T500, and R403 on the SARS-CoV-2 S-protein receptor-binding domain are determined as true hot spots, contributing to shaping and determining the stability of the relevant protein-protein interface. Overall, these results could be used to estimate the binding affinity of the viral protein to different allelic variants of ACE2 receptors discovered in COVID-19 patients and for the effective structure-based design and development of neutralizing antibodies, vaccines, and protein/protein inhibitors against this terrible new coronavirus.
引用
收藏
页码:11821 / 11830
页数:10
相关论文
共 50 条
[31]   Computational Insights into the Allosteric Effect and Dynamic Structural Features of the SARS-COV-2 Spike Protein [J].
Xue, Qiao ;
Liu, Xian ;
Pan, Wenxiao ;
Zhang, Aiqian ;
Fu, Jianjie ;
Jiang, Guibin .
CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (06)
[32]   Inhibitory mechanism of Ambroxol and Bromhexine Hydrochlorides as potent blockers of molecular interaction between SARS-CoV-2 spike protein and human angiotensin-converting Enzyme-2 [J].
Kehinde, Idowu A. ;
Egbejimi, Anu ;
Kaur, Manvir ;
Onyenaka, Collins ;
Adebusuyi, Tolulope ;
Olaleye, Omonike A. .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2022, 114
[33]   SARS-CoV-2 and the Angiotensin-Converting Enzyme 2 Receptor: Angiotensin-Converting Enzyme Inhibitor/Angiotensin 2 Receptor Blocker Utilization and a Shift Towards the Renin-Angiotensin-Aldosterone System Classical Pathway [J].
Felber, Randy ;
New, William ;
Riskin, Suzanne I. .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (03)
[34]   Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator [J].
Bian, Jingwei ;
Li, Zijian .
ACTA PHARMACEUTICA SINICA B, 2021, 11 (01) :1-12
[35]   Angiotensin Type 1 Receptor-Dependent Internalization of SARS-CoV-2 by Angiotensin-Converting Enzyme 2 [J].
Ogunlade, Blessing O. ;
Lazartigues, Eric ;
Filipeanu, Catalin M. .
HYPERTENSION, 2021, 77 (04) :E42-E43
[36]   Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent [J].
Basit, Abdul ;
Ali, Tanveer ;
Rehman, Shafiq Ur .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (10) :3605-3614
[37]   Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike [J].
Kehinde, Idowu A. ;
Egbeyemi, Anu ;
Kaur, Manvir ;
Onyenaka, Collins ;
Adebusuyi, Tolulope ;
Olaleye, Omonike A. .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (07) :2992-3001
[38]   Evaluating angiotensin-converting enzyme 2-mediated SARS-CoV-2 entry across species [J].
Zhang, Hong-Liang ;
Li, Yu-Ming ;
Sun, Jing ;
Zhang, Yu-Yuan ;
Wang, Tong-Yun ;
Sun, Ming-Xia ;
Wang, Meng-Hang ;
Yang, Yue-Lin ;
Hu, Xiao-Liang ;
Tang, Yan-Dong ;
Zhao, Jincun ;
Cai, Xuehui .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 296
[39]   Structural Analysis of the Spike Protein of SARS-CoV-2 Variants and Other Betacoronaviruses Using Molecular Dynamics [J].
Bolivar-Munoz, Jonathan ;
Vits, Sofia ;
Bermudez-Santana, Clara Isabel ;
Galindo, Johan Fabian .
CHEMPHYSCHEM, 2022, 23 (23)
[40]   Lung Expression of Human Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection [J].
Han, Kun ;
Blair, Robert, V ;
Iwanaga, Naoki ;
Liu, Fengming ;
Russell-Lodrigue, Kasi E. ;
Qin, Zhongnan ;
Midkiff, Cecily C. ;
Golden, Nadia A. ;
Doyle-Meyers, Lara A. ;
Kabir, Mohammad E. ;
Chandler, Kristin E. ;
Cutrera, Kellie L. ;
Ren, Mi ;
Monjure, Christopher J. ;
Lehmicke, Gabrielle ;
Fischer, Tracy ;
Beddingfield, Brandon ;
Wanek, Alanna G. ;
Birnbaum, Angela ;
Maness, Nicholas J. ;
Roy, Chad J. ;
Datta, Prasun K. ;
Rappaport, Jay ;
Kolls, Jay K. ;
Qin, Xuebin .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2021, 64 (01) :79-88