The future of digital health with federated learning

被引:1290
作者
Rieke, Nicola [1 ,2 ]
Hancox, Jonny [3 ]
Li, Wenqi [4 ]
Milletari, Fausto [1 ]
Roth, Holger R. [5 ]
Albarqouni, Shadi [2 ,6 ]
Bakas, Spyridon [7 ]
Galtier, Mathieu N. [8 ]
Landman, Bennett A. [9 ]
Maier-Hein, Klaus [10 ,11 ]
Ourselin, Sebastien [12 ]
Sheller, Micah [13 ]
Summers, Ronald M. [14 ]
Trask, Andrew [15 ,16 ,17 ]
Xu, Daguang [5 ]
Baust, Maximilian [1 ]
Cardoso, M. Jorge [12 ]
机构
[1] NVIDIA GmbH, Munich, Germany
[2] Tech Univ Munich TUM, Munich, Germany
[3] NVIDIA Ltd, Reading, Berks, England
[4] NVIDIA Ltd, Cambridge, England
[5] NVIDIA Corp, Bethesda, MD USA
[6] Imperial Coll London, London, England
[7] Univ Penn UPenn, Philadelphia, PA USA
[8] Owkin, Paris, France
[9] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA
[10] German Canc Res Ctr, Heidelberg, Germany
[11] Heidelberg Univ Hosp, Heidelberg, Germany
[12] Kings Coll London KCL, London, England
[13] Intel Corp, Santa Clara, CA USA
[14] NIH, Ctr Clin, Bethesda, MD 20892 USA
[15] OpenMined, Oxford, England
[16] Univ Oxford, Oxford, England
[17] Ctr Governance AI GovAI, Oxford, England
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院; 英国科研创新办公室;
关键词
E-learning;
D O I
10.1038/s41746-020-00323-1
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML will be prevented from reaching its full potential and, ultimately, from making the transition from research to clinical practice. This paper considers key factors contributing to this issue, explores how federated learning (FL) may provide a solution for the future of digital health and highlights the challenges and considerations that need to be addressed.
引用
收藏
页数:7
相关论文
共 58 条
[51]   P3SGD: Patient Privacy Preserving SGD for Regularizing Deep CNNs in Pathological Image Classification [J].
Wu, Bingzhe ;
Zhao, Shiwan ;
Sun, Guangyu ;
Zhang, Xiaolu ;
Su, Zhong ;
Zeng, Caihong ;
Liu, Zhihong .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2094-2103
[52]  
XU J, 2019, ARXIV191106270
[53]   DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning [J].
Yan, Ke ;
Wang, Xiaosong ;
Lu, Le ;
Summers, Ronald M. .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (03)
[54]   Federated Machine Learning: Concept and Applications [J].
Yang, Qiang ;
Liu, Yang ;
Chen, Tianjian ;
Tong, Yongxin .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2019, 10 (02)
[55]   Quantifying Differences and Similarities in Whole-Brain White Matter Architecture Using Local Connectome Fingerprints [J].
Yeh, Fang-Cheng ;
Vettel, Jean M. ;
Singh, Aarti ;
Poczos, Barnabas ;
Grafton, Scott T. ;
Erickson, Kirk I. ;
Tseng, Wen-Yih I. ;
Verstynen, Timothy D. .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (11)
[56]  
Zeng HQ, 2017, PROC INT CONF RECON
[57]  
Zhao Y., 2018, ARXIVABS18060058
[58]  
Zhu LG, 2019, ADV NEUR IN, V32