Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms

被引:106
|
作者
Mizuno, T [1 ]
机构
[1] Nagoya Univ, Sch Agr, Mol Microbiol Lab, Chikusa Ku, Nagoya, Aichi 464861, Japan
关键词
His-kinases; pseudo-response regulators; plant circadian clock; response regulators; two-component systems;
D O I
10.1271/bbb.69.2263
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the most fundamental and widespread mechanisms of signal perception/transduction in prokaryotes is generally referred to as the "two-component regulatory system (TCS)." The concept of TCS has already been introduced a decade ago from extensive studies on the model prokaryotic bacterium Escherichia coli. Results of recent studies on the model higher plant Arabidopsis thaliana have led us to learn a new scenario as to the versatility of TCS in eukaryotic species. In the plant, on the one hand, TCS are crucially involved in the signal transduction mechanism underlying the regulation of sophisticated plant development in response to hormones (e.g., cytokinin and ethylene). On the other hand, a unique TCS variant is essentially integrated into the plant clock function that generates circadian rhythms, and also tells us the time and season on this regularly spinning and revolving world. In this review, recent progress with regard to studies on TCS in higher plants will be discussed, focusing particularly on the model higher plant Arabidopsis thaliana.
引用
收藏
页码:2263 / 2276
页数:14
相关论文
共 50 条
  • [1] Two-component and phosphorelay signal transduction
    Hoch, JA
    CURRENT OPINION IN MICROBIOLOGY, 2000, 3 (02) : 165 - 170
  • [2] Two-component and phosphorelay signal-transduction systems as therapeutic targets
    Stephenson, K
    Hoch, JA
    CURRENT OPINION IN PHARMACOLOGY, 2002, 2 (05) : 507 - 512
  • [3] Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms
    Stephenson, K
    Hoch, JA
    CURRENT MEDICINAL CHEMISTRY, 2004, 11 (06) : 765 - 773
  • [4] Signal decay through a reverse phosphorelay in the arc two-component signal transduction system
    Georgellis, D
    Kwon, O
    De Wulf, P
    Lin, ECC
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) : 32864 - 32869
  • [5] Evolution of Two-Component Signal Transduction Systems
    Capra, Emily J.
    Laub, Michael T.
    ANNUAL REVIEW OF MICROBIOLOGY, VOL 66, 2012, 66 : 325 - 347
  • [6] Two-component systems in plant signal transduction
    Urao, T
    Yamaguchi-Shinozaki, K
    Shinozaki, K
    TRENDS IN PLANT SCIENCE, 2000, 5 (02) : 67 - 74
  • [7] Transmembrane signal transduction in two-component systems
    Gushchin, I
    Gordeliy, V
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2018, 50 (06) : 505 - 505
  • [8] The mechanism of signal transduction by two-component systems
    Casino, Patricia
    Rubio, Vicente
    Marina, Alberto
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2010, 20 (06) : 763 - 771
  • [9] Two-component signal transduction
    Bourret, Robert B.
    Silversmith, Ruth E.
    CURRENT OPINION IN MICROBIOLOGY, 2010, 13 (02) : 113 - 115
  • [10] Two-component signal transduction
    Stock, AM
    Robinson, VL
    Goudreau, PN
    ANNUAL REVIEW OF BIOCHEMISTRY, 2000, 69 : 183 - 215