On the B-Fredholm Alternative

被引:7
作者
Berkani, Mohammed [1 ]
机构
[1] Univ Mohammed 1, Fac Sci, Dept Math, Oujda 60000, Morocco
关键词
Unbounded B-Fredholm operators; index; Drazin inverse; Fredholm alternative; ASCENT DESCENT NULLITY; OPERATORS; DEFECT;
D O I
10.1007/s00009-013-0260-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give an extended version of the Fredholm alternative, by including the B-Fredholm case. Thus if T a B-Fredholm operator acting on a Banach space, we study equations of the type T(x) = y, for x, y elements of the range R(T (n) ) of T for . In this study we include the case when 0 is a pole of infinite rank of the resolvent of T. Preliminarily, we define unbounded closed B-Fredholm operators on Banach spaces.
引用
收藏
页码:1487 / 1496
页数:10
相关论文
共 14 条
[1]  
[Anonymous], CUBO MAT ED
[2]   Unbounded B-Fredholm operators on Hilbert spaces [J].
Berkani, M. ;
Castro-Gonzalez, N. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 :285-296
[3]   Index of B-Fredholm operators and generalization of a Weyl theorem [J].
Berkani, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (06) :1717-1723
[4]   On a class of quasi-Fredholm operators [J].
Berkani, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 34 (02) :244-249
[5]   B-Weyl spectrum and poles of the resolvent [J].
Berkani, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (02) :596-603
[6]  
Berkani M., 2004, MATH BOHEM, V129, P177
[7]   ASCENT DESCENT NULLITY AND DEFECT A NOTE ON A PAPER BY TAYLOR,AE [J].
KAASHOEK, MA .
MATHEMATISCHE ANNALEN, 1967, 172 (02) :105-&
[8]  
Kato T., 1995, Perturbation Theory for Linear Operators, DOI [DOI 10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-53393-8]
[9]  
Labrousse JP., 1980, Rend. Circ. Mat. Palermo, V29, P161, DOI [10.1007/BF02849344, DOI 10.1007/BF02849344]
[10]   SPECTRAL ANALYSIS USING ASCENT, DESCENT, NULLITY AND DEFECT [J].
LAY, DC .
MATHEMATISCHE ANNALEN, 1970, 184 (03) :197-&