Direct analysis of terpenes from biological buffer systems using SESI and IR-MALDESI

被引:9
作者
Nazari, Milad [1 ,2 ]
Malico, Alexandra A. [2 ]
Ekeloef, Mans [1 ,2 ]
Lund, Sean [2 ,3 ]
Williams, Gavin J. [2 ,4 ]
Muddiman, David C. [1 ,2 ]
机构
[1] North Carolina State Univ, Dept Chem, WM Keck FTMS Lab Human Hlth Res, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA
[3] Amyris Inc, 5885 Hollis St Ste, Emeryville, CA 94608 USA
[4] North Carolina State Univ, Comparat Med Inst, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
Terpenes; IR-MALDESI; SESI; Direct analysis; Biological buffers; Q Exactive Plus; RESONANCE MASS-SPECTROMETRY; MATRIX; ION; SYNTHASES; PRODUCTS;
D O I
10.1007/s00216-017-0570-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Terpenes are the largest class of natural products with a wide range of applications including use as pharmaceuticals, fragrances, flavorings, and agricultural products. Terpenes are biosynthesized by the condensation of a variable number of isoprene units resulting in linear polyisoprene diphosphate units, which can then be cyclized by terpene synthases into a range of complex structures. While these cyclic structures have immense diversity and potential in different applications, their direct analysis in biological buffer systems requires intensive sample preparation steps such as salt cleanup, extraction with organic solvents, and chromatographic separations. Electrospray post-ionization can be used to circumvent many sample cleanup and desalting steps. SESI and IR-MALDESI are two examples of ionization methods that employ electrospray post-ionization at atmospheric pressure and temperature. By coupling the two techniques and doping the electrospray solvent with silver ions, olefinic terpenes of different classes and varying degrees of volatility were directly analyzed from a biological buffer system with no sample workup steps.
引用
收藏
页码:953 / 962
页数:10
相关论文
共 23 条
[1]  
Berchtold C., SECONDARY ELECTROSPR
[2]   Isotopic compositions of the elements 2009 (IUPAC Technical Report) [J].
Berglund, Michael ;
Wieser, Michael E. .
PURE AND APPLIED CHEMISTRY, 2011, 83 (02) :397-410
[3]   Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens [J].
Bokhart, M. T. ;
Muddiman, D. C. .
ANALYST, 2016, 141 (18) :5236-5245
[4]   Ionization of vapor molecules by an electrospray cloud [J].
de la Mora, Juan Fernandez .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2011, 300 (2-3) :182-193
[5]   Direct Analysis of Triterpenes from High-Salt Fermented Cucumbers Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) [J].
Ekelof, Mans ;
McMurtrie, Erin K. ;
Nazari, Milad ;
Johanningsmeier, Suzanne D. ;
Muddiman, David C. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2017, 28 (02) :370-375
[6]   The function of terpene natural products in the natural world [J].
Gershenzon, Jonathan ;
Dudareva, Natalia .
NATURE CHEMICAL BIOLOGY, 2007, 3 (07) :408-414
[7]   Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes [J].
Jackson, Ayanna U. ;
Shum, Thomas ;
Sokol, Ewa ;
Dill, Allison ;
Cooks, R. Graham .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2011, 399 (01) :367-376
[8]   Lithium Cationization for Petroleum Analysis by Positive Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry [J].
Lobodin, Vladislav V. ;
Juyal, Priyanka ;
McKenna, Amy M. ;
Rodgers, Ryan P. ;
Marshall, Alan G. .
ENERGY & FUELS, 2014, 28 (11) :6841-6847
[9]   Silver dopants for targeted and untargeted direct analysis of unsaturated lipids via infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) [J].
Meier, Florian ;
Garrard, Kenneth P. ;
Muddiman, David C. .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2014, 28 (22) :2461-2470
[10]  
Ng KM, 1998, RAPID COMMUN MASS SP, V12, P1679, DOI 10.1002/(SICI)1097-0231(19981130)12:22<1679::AID-RCM388>3.0.CO