Variability in litter inputs affecting soil fungi and bacteria through moisture and carbon content in forest soil

被引:0
|
作者
Fekete, Istvan [1 ]
Biro, Borbala [2 ]
Beni, Aron [3 ]
Varbiro, Gabor [4 ]
Juhos, Katalin [2 ]
Makadi, Marianna [5 ]
Kotroczo, Zsolt [2 ]
机构
[1] Univ Nyiregyhaza, Inst Environm Sci, Sostoist 31-b, H-4400 Nyiregyhaza, Hungary
[2] Hungarian Univ Agr & Life Sci, Dept Agro Environm Studies, Villanyi St 29-43, H-1118 Budapest, Hungary
[3] Univ Debrecen, Inst Agr Chem & Soil Sci, Boszormenyi St 138, H-4032 Debrecen, Hungary
[4] HAS, Dept Tisza River Res, Ctr Ecol, Bem Sqr 18-c, H-4026 Debrecen, Hungary
[5] Univ Debrecen, Res Inst Nyiregyhaza, Ctr Agr Sci, H-4400 Nyiregyhaza, Hungary
关键词
Soil organic matter; Soil biology; Litter manipulation; Climate change; Fungi and bacteria; Soil functioning; ENZYME-ACTIVITIES; ECTOMYCORRHIZAL FUNGI; BIOMASS DETERMINATION; MICROBIAL BIOMASS; CLIMATE-CHANGE; GROWTH; RESPIRATION; PLANT; DECOMPOSITION; MYCELIUM;
D O I
10.37501/soilsa/157106
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soil organic matter content is a main driver of soil functions and ecosystem services. Various quantity of litter inputs was studied in a Quercetum-petraeae-cerris forest in northeastern Hungary at the Sikfokut DIRT (Detritus Input and Removal Treatment) experimental site. The goal of the project was to assess how rates and sources of plant litter inputs might control the accumulation and dynamics of organic matter and nutrients in forest soils over decadal time scales. Six treatments were applied at the experimental site. Beside the control (CO) condition, two detritus addition (double litter (DL) and double wood (DW)) and three detritus removal (no litter (NL), no roots (NR) and no input (NI) treatments were applied in which detritus quantities were manipulated above and below ground. Our aim was the study of the relationship between the litter treatments, their carbon (C) content and the number of microorganisms and biomass of fungi. Litter treatments also had a significant effect on soil microorganisms and soil organic carbon (SOC) content. These effects decreased in parallel with soil depth. Fungal biomass values were more than five times higher for DL (2 mg fungi g(-1) soil) than for the soils of NI (0.4 mg fungi g(-1) soil) condition in the upper 5 cm layer, while 0.57 (DL) and 0.08 (NI) values were measured in the 15-25 cm layer. The most probable number (MPN) method, which measures the number of certain groups of living and active microorganisms (fungi and bacteria), showed even greater differences between the treatments. Positive direct and indirect effects of greater organic matter inputs is affected the soil functioning through on better moisture and C content in soils. Litter entering the forest floor resulted in a larger amount of organic substrate and inorganic nutrients. In addition, it resulted in more favorable microclimatic conditions (lower temperature and soil moisture fluctuation) in the soils, which increased the number of microorganisms and the biomass of fungi. There is no significant difference in the number of microbes between the control and doubling treatments (DL, DW). Furthermore, in the case of fungal biomass, there is a significant difference only in the upper 5 cm layer of the DL. These results explain the significantly higher SOC content of the DL treatment compared to the other treatments, suggesting a weaker priming effect. In summary, the results of our research suggest that litter removal had a much greater effect on soil microbial number and fungal biomass as well as SOC content than the addition of a similar amount of litter.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Drought legacies on soil respiration and microbial community in a Mediterranean forest soil under different soil moisture and carbon inputs
    Liu, Lei
    Estiarte, Marc
    Bengtson, Per
    Li, Jian
    Asensio, Dolores
    Wallander, Hakan
    Penuelas, Josep
    GEODERMA, 2022, 405
  • [2] Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture
    Yuste, J. Curiel
    Baldocchi, D. D.
    Gershenson, A.
    Goldstein, A.
    Misson, L.
    Wong, S.
    GLOBAL CHANGE BIOLOGY, 2007, 13 (09) : 2018 - 2035
  • [3] Variability of Organic Matter Inputs Affects Soil Moisture and Soil Biological Parameters in a European Detritus Manipulation Experiment
    Fekete, Istvan
    Kotroczo, Zsolt
    Varga, Csaba
    Hargitai, Rita
    Townsend, Kimberly
    Csanyi, Gabor
    Varbiro, Gabor
    ECOSYSTEMS, 2012, 15 (05) : 792 - 803
  • [4] Variability of Aboveground Litter Inputs Alters Soil Carbon and Nitrogen in a Coniferous-Broadleaf Mixed Forest of Central China
    Miao, Renhui
    Ma, Jun
    Liu, Yinzhan
    Liu, Yanchun
    Yang, Zhongling
    Guo, Meixia
    FORESTS, 2019, 10 (02):
  • [5] Altered litter inputs modify carbon and nitrogen storage in soil organic matter in a lowland tropical forest
    Sayer, Emma J.
    Baxendale, Catherine
    Birkett, Ali J.
    Brechet, Laetitia M.
    Castro, Biancolini
    Kerdraon-Byrne, Deirdre
    Lopez-Sangil, Luis
    Rodtassana, Chadtip
    BIOGEOCHEMISTRY, 2021, 156 (01) : 115 - 130
  • [6] Soil Fungi and Soil Organic Carbon Stocks in the Profile of a Forest Arenosol
    Ankuda, Jelena
    Sivojiene, Diana
    Armolaitis, Kestutis
    Jakutis, Audrius
    Aleinikoviene, Jurate
    Drapanauskaite, Donata
    Marozas, Vitas
    Mishcherikova, Valeriia
    Stakenas, Vidas
    Mikryukov, Vladimir
    Tedersoo, Leho
    DIVERSITY-BASEL, 2024, 16 (01):
  • [7] Effect of nitrogen addition on carbon and nitrogen stable isotopes in temperate forest litter and soil
    Wu, N.
    Qian, H.
    Tan, Y.
    Wang, Y.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2018, 39 (06): : 1036 - 1040
  • [8] Root-microbial interaction accelerates soil nitrogen depletion but not soil carbon after increasing litter inputs to a coniferous forest
    Lyu, Maokui
    Li, Xiaojie
    Xie, Jinsheng
    Homyak, Peter M.
    Ukonmaanaho, Liisa
    Yang, Zhijie
    Liu, Xiaofei
    Ruan, Chaoyue
    Yang, Yusheng
    PLANT AND SOIL, 2019, 444 (1-2) : 153 - 164
  • [9] Soil Moisture Alters the Response of Soil Organic Carbon Mineralization to Litter Addition
    Wang, Qingkui
    Zeng, Zhangquan
    Zhong, Micai
    ECOSYSTEMS, 2016, 19 (03) : 450 - 460
  • [10] Litter decay controlled by temperature, not soil properties, affecting future soil carbon
    Gregorich, Edward G.
    Janzen, Henry
    Ellert, Benjamin H.
    Helgason, Bobbi L.
    Qian, Budong
    Zebarth, Bernie J.
    Angers, Denis A.
    Beyaert, Ronald P.
    Drury, Craig F.
    Duguid, Scott D.
    May, William E.
    McConkey, Brian G.
    Dyck, Miles F.
    GLOBAL CHANGE BIOLOGY, 2017, 23 (04) : 1725 - 1734