Disjunctive Rado numbers

被引:4
|
作者
Johnson, B [1 ]
Schaal, D [1 ]
机构
[1] S Dakota State Univ, Dept Math & Stat, Brookings, SD 57007 USA
基金
美国国家科学基金会;
关键词
Rado; disjunctive; Schur; Ramsey;
D O I
10.1016/j.jcta.2005.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If L(1) and L(2) are linear equations, then the disjunctive Rado number of the set {L(1), L(2)} is the least integer n, provided that it exists, such that for every 2-coloring of the set {1, 2,..., n} there exists a monochromatic solution to either L(1) or L(2). If such an integer n does not exist, then the disjunctive Rado number is infinite. In this paper, it is shown that for all integers a >= 1 and b >= 1, the disjunctive Rado number for the equations x(1) + a = x(2) and x(1) + b = x(2) is a + b + 1 - gcd(a, b) if gcd(a,b)/a + gcd(a,b)/b is odd and the disjunctive Rado number for these equations is infinite otherwise. It is also shown that for all integers a > 1 and b > 1, the disjunctive Rado number for the equations ax(1) = x(2) and bx(1) = x(2) is c(s+t-1) if there exist natural numbers c, s, and t such that a = c(s) and b = c(t) and s + t is an odd integer and c is the largest such integer, and the disjunctive Rado number for these equations is infinite otherwise. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 36 条
  • [1] On some Rado numbers for generalized arithmetic progressions
    Grynkiewicz, DJ
    DISCRETE MATHEMATICS, 2004, 280 (1-3) : 39 - 50
  • [2] On Rado's Boundedness Conjecture
    Fox, J
    Kleitman, DJ
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (01) : 84 - 100
  • [3] On a problem of Erdős and Rado
    Jean A. Larson
    William J. Mitchell
    Annals of Combinatorics, 1997, 1 (1) : 245 - 252
  • [4] DISJUNCTIVE ELEMENTS OF INVERSE MONOIDS
    Wu, Hsing Y.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2010, 5 (01): : 111 - 121
  • [5] The implications of conjunctive and disjunctive forgiveness for sexual abuse
    Helm Jr. H.W.
    Cook J.R.
    Berecz J.M.
    Pastoral Psychology, 2005, 54 (1) : 23 - 34
  • [6] The Dynamics of Conjunctive and Disjunctive Boolean Network Models
    Abdul Salam Jarrah
    Reinhard Laubenbacher
    Alan Veliz-Cuba
    Bulletin of Mathematical Biology, 2010, 72 : 1425 - 1447
  • [7] The Dynamics of Conjunctive and Disjunctive Boolean Network Models
    Jarrah, Abdul Salam
    Laubenbacher, Reinhard
    Veliz-Cuba, Alan
    BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (06) : 1425 - 1447
  • [8] A Conceptual Approach for Discovering Proportions of Disjunctive Routing Patterns in a Business Process Model
    Kim, Kyoungsook
    Yeon, Moonsuk
    Jeong, Byeongsoo
    Kim, Kwanghoon
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (02): : 1148 - 1161
  • [9] Fuzzy Disjunctive and Conjunctive Canonical Forms:: a foundation for interval-valued fuzzy techniques
    Türksen, IB
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 2353 - 2358
  • [10] Uniforms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory
    Deschrijver, Glad
    INFORMATION SCIENCES, 2013, 244 : 48 - 59