Formation of L12-ordered precipitation in an alumina-forming austenitic stainless steel via Cu addition and its contribution to creep/rupture resistance

被引:40
作者
Zhao, Bingbing [1 ,2 ]
Fan, Jifu [1 ,2 ]
Liu, Yize [1 ,2 ]
Zhao, Lin [1 ,2 ]
Dong, Xianping [1 ,2 ,3 ]
Sun, Feng [1 ,2 ,3 ]
Zhang, Lanting [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Key Lab High Temp Mat & Precis Forming, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Gas Turbine Res Inst, Shanghai 200240, Peoples R China
关键词
Alumina-forming austenitic steel; Creep; L1(2)-ordered precipitate; Precipitation strengthening; HIGH-TEMPERATURE CREEP; MECHANICAL-PROPERTIES; TEMPORAL EVOLUTION; BEHAVIOR; TRANSITION; STRENGTH; ALLOYS; PHASE; NB; NI;
D O I
10.1016/j.scriptamat.2015.07.019
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Addition of 2.8 wt.% Cu to an alumina-forming austenitic (AFA) stainless steel promotes formation of a L1(2)-ordered phase with the dominating elements Ni, Cu and Al, instead of B2-NiAl and Cu-rich phases as predicted by the phase equilibrium calculation. At 700 degrees C1150 MPa, the creep/rupture life of the AFA steel increases from 1537 h to 2047 h with the occurrence of the L1(2)-ordered phase. The nano-size L1(2)-ordered Ni-Cu-Al precipitates are uniformly distributed in the austenitic matrix with an average diameter of 35 +/- 7 nm even after 2047 h creep/rupture testing. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 37 条
[1]   Coherent precipitation of copper in Super304H austenite steel [J].
Bai, J. W. ;
Liu, P. P. ;
Zhu, Y. M. ;
Li, X. M. ;
Chi, C. Y. ;
Yu, H. Y. ;
Xie, X. S. ;
Zhan, Q. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 584 :57-62
[2]   Aging effects on the mechanical properties of alumina-forming austenitic stainless steels [J].
Bei, H. ;
Yamamoto, Y. ;
Brady, M. P. ;
Santella, M. L. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (7-8) :2079-2086
[3]  
Bozzolo G., 1995, J COMPUTER AIDED MAT, V2, P113
[4]   Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance [J].
Brady, M. P. ;
Magee, J. ;
Yamamoto, Y. ;
Helmick, D. ;
Wang, L. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 590 :101-115
[5]   The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application [J].
Chi, Cheng-yu ;
Yu, Hong-yao ;
Dong, Jian-xin ;
Liu, Wen-qing ;
Cheng, Shi-chang ;
Liu, Zheng-dong ;
Xie, Xi-shan .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2012, 22 (03) :175-185
[6]   Microstructural and lattice parameter study of as-cast and rapidly solidified NiAl intermetallic alloys with Cu additions [J].
Colin, J. ;
Serna, S. ;
Carnpillo, B. ;
Flores, O. ;
Juarez-Islas, J. .
INTERMETALLICS, 2008, 16 (07) :847-853
[7]   Structure and mechanical properties of NiAl and Ni3Al-based alloys [J].
Czeppe, T ;
Wierzbinski, S .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2000, 42 (08) :1499-1518
[8]  
Dong X., 2013, AQUAC RES, P1
[9]   Brittle-to-ductile transition in NiAl single crystal [J].
Ebrahimi, F ;
Shrivastava, S .
ACTA MATERIALIA, 1998, 46 (05) :1493-1502
[10]   Effect of Ni and Mn on the formation of Cu precipitates in α-Fe [J].
Gorbatov, O. I. ;
Gornostyrev, Yu. N. ;
Korzhavyi, P. A. ;
Ruban, A. V. .
SCRIPTA MATERIALIA, 2015, 102 :11-14