A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations

被引:67
作者
D'Abbicco, M. [1 ]
Ebert, M. R. [2 ]
机构
[1] Univ Bari, Dept Math, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Sao Paulo, Dept Comp & Matemat, FFCLRP, Ave Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Semi-linear evolution equations; Critical exponent; Global small data solutions; Structural damping; Test function method; DISSIPATIVE WAVE-EQUATIONS; L-P; GLOBAL EXISTENCE; BLOW-UP; SPACE; PROFILES;
D O I
10.1016/j.na.2016.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we find the critical exponent for global small data solutions to the Cauchy problem in R-n, for dissipative evolution equations with power nonlinearities vertical bar u vertical bar(p) or vertical bar ut vertical bar(p), utt + (-Delta)delta ut + (-Delta)sigma u = {u vertical bar(p), vertical bar ut vertical bar(p). Here sigma, delta is an element of N/{0}, with 2 delta <= sigma. We show that the critical exponent for each of the two nonlinearities is related to each of the two possible asymptotic profiles of the linear part of the equation, which are described by the diffusion equations: v(t) + (-Delta)(sigma-delta) v = 0, w(t) + (-Delta)(delta) w = 0. The nonexistence of global solutions in the critical and subcritical cases is proved by using the test function method (under suitable sign assumptions on the initial data), and lifespan estimates are obtained. By assuming small initial data in Sobolev spaces, we prove the existence of global solutions in the supercritical case, up to some maximum space dimension (n) over bar, and we derive L-q estimates for the solution, for q is an element of (1, infinity). For sigma = 2 delta, the result holds in any space dimension n >= 1. The existence result also remains valid if sigma and/or delta are fractional. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 46 条
[1]   NEW DECAY RATES FOR A PROBLEM OF PLATE DYNAMICS WITH FRACTIONAL DAMPING [J].
Charao, Ruy Coimbra ;
da Luz, Cleverson Roberto ;
Ikehata, Ryo .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2013, 10 (03) :563-575
[2]   Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation [J].
D'Abbicco, M. ;
Ebert, M. R. ;
Picon, T. .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2016, 7 (02) :261-293
[3]   A classification of structural dissipations for evolution operators [J].
D'Abbicco, M. ;
Ebert, M. R. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) :2558-2582
[4]   Diffusion phenomena for the wave equation with structural damping in the Lp - Lq framework [J].
D'Abbicco, M. ;
Ebert, M. R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2307-2336
[5]   An application of Lp - Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping [J].
D'Abbicco, M. ;
Ebert, M. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 99 :16-34
[6]   Semilinear structural damped waves [J].
D'Abbicco, M. ;
Reissig, M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (11) :1570-1592
[7]  
D'Abbicco M., 2015, DISCRETE CONT DYN-A, P312, DOI DOI 10.3934/PROC.2015.0312
[8]  
D'Abbicco M., 2015, CURRENT TRENDS ANAL, P209
[9]   The beam equation with nonlinear memory [J].
D'Abbicco, Marcello ;
Lucente, Sandra .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[10]   A damping term for higher-order hyperbolic equations [J].
D'Abbicco, Marcello ;
Jannelli, Enrico .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (02) :557-570