A general evolving model for growing bipartite networks

被引:9
作者
Tian, Lixin [1 ,2 ]
He, Yinghuan [1 ]
Liu, Haijun [3 ]
Du, Ruijin [1 ,4 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Jiangsu Univ, Inst Life Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[4] Chongqing Normal Univ, Coll Math Sci, Chongqing 401331, Peoples R China
关键词
Complex networks; Bipartite network; Degree distribution; Joint degree distribution;
D O I
10.1016/j.physleta.2012.04.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we propose and study an inner evolving bipartite network model. Significantly, we prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. Furthermore, the joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks. Numerical simulations and empirical results are given to verify the theoretical results. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1827 / 1832
页数:6
相关论文
共 20 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
[Anonymous], 2010, JIANGSU STAT YB, P261
[3]  
Chen Q. H., 2006, J FUJIAN NORMAL U NA, V22
[4]   Critical phenomena in complex networks [J].
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1275-1335
[5]   Structure of growing networks with preferential linking [J].
Dorogovtsev, SN ;
Mendes, JFF ;
Samukhin, AN .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4633-4636
[6]   Group-based Yule model for bipartite author-paper networks [J].
Goldstein, ML ;
Morris, SA ;
Yen, GG .
PHYSICAL REVIEW E, 2005, 71 (02)
[7]   Bipartite graphs as models of complex networks [J].
Guillaume, Jean-Loup ;
Latapy, Matthieu .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 371 (02) :795-813
[8]   Bipartite structure of all complex networks [J].
Guillaume, JL ;
Latapy, M .
INFORMATION PROCESSING LETTERS, 2004, 90 (05) :215-221
[9]   Organization of growing random networks [J].
Krapivsky, PL ;
Redner, S .
PHYSICAL REVIEW E, 2001, 63 (06)
[10]   Asymptotic properties of degree-correlated scale-free networks [J].
Menche, Joerg ;
Valleriani, Angelo ;
Lipowsky, Reinhard .
PHYSICAL REVIEW E, 2010, 81 (04)