GSMBE grown infrared quantum cascade laser structures

被引:7
作者
Li, AZ [1 ]
Chen, JX [1 ]
Yang, QK [1 ]
Ren, YC [1 ]
机构
[1] Acad Sinica, Shanghai Inst Met, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
关键词
quantum cascade laser; Bragg reflector; InP buffer layer;
D O I
10.1016/S0022-0248(98)01487-0
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
In this paper we show the evaluated results of a quantum cascade laser (QCL) structure with a vertical transition and a Bragg reflector grown by gas source molecular beam epitaxy (GSMBE). The Al0.48In0.52As/Ga0.47In0.53As QCL structures lattice matched to the InP substrate consists of alternating 25 periods of undoped coupled-quantum-well active regions with compositionally graded layers, a superlattice graded region to provide strong electron confinement in the upper state using a Bragg reflector and an InP buffer layer. The laser operates in the temperature range from 8 to 250 K with measured integrated optical powers up to 70 mW at 8 K, and 5 mW at 250 K. The high-resolution emission spectrum of the laser at 250 K provides direct evidence of laser action from the narrowing of the strong line and clearly illustrating the longitudinal mode structure. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:901 / 904
页数:4
相关论文
共 50 条
[31]   Mid-infrared Backscattering Measurements of Building Materials using a Quantum Cascade Laser [J].
Lwin, Maung ;
Corrigan, Paul ;
Gross, Barry ;
Moshary, Fred ;
Ahmed, Samir .
INFRARED TECHNOLOGY AND APPLICATIONS XXXVI, PTS 1 AND 2, 2010, 7660
[32]   Intra-pulse beam steering in a mid-infrared quantum cascade laser [J].
Emilia Pruszyńska-Karbownik ;
Kazimierz Regiński ;
Piotr Karbownik ;
Bohdan Mroziewicz .
Optical and Quantum Electronics, 2015, 47 :835-842
[33]   A reliable method to determine airborne microplastics using quantum cascade laser infrared spectrometry [J].
Lopez-Rosales, Adrian ;
Ferreiro, Borja ;
Andrade, Jose ;
Fernandez-Amado, Maria ;
Gonzalez-Pleiter, Miguel ;
Lopez-Mahia, Purificacion ;
Rosal, Roberto ;
Muniategui-Lorenzo, Soledad .
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 913
[34]   Design of an analyzer based on a quantum cascade laser for substance identification by infrared reflected radiation [J].
Anfimov, Dmitriy R. ;
Fufurin, Igor L. ;
Golyak, Igor S. ;
Morozov, Andrey N. .
INTEGRATED OPTICS: DESIGN, DEVICES, SYSTEMS AND APPLICATIONS VI, 2021, 11775
[35]   Intra-pulse beam steering in a mid-infrared quantum cascade laser [J].
Pruszynska-Karbownik, Emilia ;
Reginski, Kazimierz ;
Karbownik, Piotr ;
Mroziewicz, Bohdan .
OPTICAL AND QUANTUM ELECTRONICS, 2015, 47 (04) :835-842
[36]   High Power, Room Temperature InP-Based Quantum Cascade Laser Grown on Si [J].
Slivken, Steven ;
Razeghi, Manijeh .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2022, 58 (06)
[37]   Electrical and optical investigations of GaAs/(Al,Ga)As quantum-cascade-laser structures [J].
Ohtsuka, T ;
Schrottke, L ;
Kostial, H ;
Hey, R ;
Grahn, HT .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4) :623-625
[38]   Self-consistent simulations of quantum cascade laser structures for frequency comb generation [J].
Christian Jirauschek ;
Petar Tzenov .
Optical and Quantum Electronics, 2017, 49
[39]   Self-consistent simulations of quantum cascade laser structures for frequency comb generation [J].
Jirauschek, Christian ;
Tzenov, Petar .
OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (12)
[40]   Modeling of the Quantum Cascade Laser Characteristics [J].
Timofeyev, Vladimir ;
Shalenko, Igor .
2016 IEEE 36TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2016, :98-100