Jordan KdV systems and Painleve property

被引:9
|
作者
Karasu, A
机构
[1] Department of Physics, Middle East Technical University
关键词
D O I
10.1007/BF02435890
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Painleve property of Jordan KdV systems in two dimensions is studied. It is shown that a subclass of these equations on a nonassociative algebra possesses the Painleve property.
引用
收藏
页码:705 / 713
页数:9
相关论文
共 50 条
  • [31] SYMMETRIES AND THE PAINLEVE PROPERTY
    STRAMPP, W
    PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (04): : 802 - 809
  • [32] A NOTE ON PAINLEVE PROPERTY OF ANHARMONIC SYSTEMS WITH AN EXTERNAL PERIODIC FIELD
    BOUNTIS, TC
    PHYSICS LETTERS A, 1983, 97 (03) : 85 - 86
  • [33] Apparent singularities of Fuchsian equations and the Painleve property for Gamier systems
    Gontsov, R. R.
    Vyugin, I. V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) : 2419 - 2435
  • [34] Nonautonomous cubic systems of two differential equations with the Painleve property
    Matatov, VI
    Mikhailovskaya, LV
    DIFFERENTIAL EQUATIONS, 1998, 34 (02) : 220 - 225
  • [35] WEAK-PAINLEVE PROPERTY AND INTEGRABILITY OF GENERAL DYNAMICAL SYSTEMS
    Li, Wenlei
    Shi, Shaoyun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3667 - 3681
  • [36] PAINLEVE PROPERTY AND INTEGRABILITY
    ERCOLANI, N
    SIGGIA, ED
    PHYSICS LETTERS A, 1986, 119 (03) : 112 - 116
  • [37] PAINLEVE PROPERTY AND GEOMETRY
    ERCOLANI, N
    SIGGIA, ED
    PHYSICA D, 1989, 34 (03): : 303 - 346
  • [38] PAINLEVE PROPERTY OF ANHARMONIC SYSTEMS WITH AN EXTERNAL PERIODIC FIELD - COMMENT
    RAMANI, A
    DORIZZI, B
    GRAMMATICOS, B
    PHYSICS LETTERS A, 1983, 97 (03) : 87 - 87
  • [39] Lotka-Volterra systems satisfying a strong Painleve property
    Bountis, Tassos
    Vanhaecke, Pol
    PHYSICS LETTERS A, 2016, 380 (47) : 3977 - 3982
  • [40] Painleve property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation*
    Wang, Xiao-Bo
    Jia, Man
    Lou, Sen-Yue
    CHINESE PHYSICS B, 2021, 30 (01)