Jordan KdV systems and Painleve property

被引:9
|
作者
Karasu, A
机构
[1] Department of Physics, Middle East Technical University
关键词
D O I
10.1007/BF02435890
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Painleve property of Jordan KdV systems in two dimensions is studied. It is shown that a subclass of these equations on a nonassociative algebra possesses the Painleve property.
引用
收藏
页码:705 / 713
页数:9
相关论文
共 50 条
  • [21] PAINLEVE PROPERTY OF ANHARMONIC SYSTEMS WITH AN EXTERNAL PERIODIC FIELD
    STEEB, WH
    KUNICK, A
    PHYSICS LETTERS A, 1983, 95 (06) : 269 - 272
  • [22] INTEGRABILITY AND THE PAINLEVE PROPERTY FOR LOW-DIMENSIONAL SYSTEMS
    RAMANI, A
    DORIZZI, B
    GRAMMATICOS, B
    BOUNTIS, T
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) : 878 - 883
  • [23] INTEGRABILITY OF NON-HAMILTONIAN SYSTEMS AND THE PAINLEVE PROPERTY
    BOUNTIS, T
    PHYSICA D, 1984, 11 (03): : 402 - 402
  • [24] Non-autonomous Svinolupov-Jordan KdV systems
    Gürses, M
    Karasu, A
    Turhan, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28): : 5705 - 5711
  • [25] Painleve property and approximate solutions using Adomian decomposition for a nonlinear KdV-like wave equation
    Sohail, Ayesha
    Maqbool, Khadija
    Hayat, Tasawar
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 359 - 366
  • [26] The second Painleve hierarchy and the stationary KdV hierarchy
    Joshi, N
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2004, 40 (03) : 1039 - 1061
  • [27] A new coupled KdV equation: Painleve test
    Tong, B
    Jia, M
    Lou, SY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (06) : 965 - 968
  • [28] Three lessons on the Painleve property and the Painleve equations
    Kruskal, MD
    Grammaticos, B
    Tamizhmani, T
    DISCRETE INTEGRABLE SYSTEMS, 2004, 644 : 1 - 15
  • [29] On the weak Kowalevski-Painleve property for hyperelliptically separable systems
    Abenda, S
    Fedorov, Y
    ACTA APPLICANDAE MATHEMATICAE, 2000, 60 (02) : 137 - 178
  • [30] THE PAINLEVE PROPERTY TRANSFORMED
    SAKOVICH, SY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (13): : L833 - L836