Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies

被引:83
|
作者
Kombaiah, K. [1 ]
Vijaya, J. Judith [1 ]
Kennedy, L. John [2 ]
Bououdina, M. [3 ]
Al-Najar, Basma [3 ]
机构
[1] Loyola Coll, Dept Chem, Catalysis & Nanomat Res Lab, Madras 600034, Tamil Nadu, India
[2] VIT Univ, Vellore Inst Technol, Sch Adv Sci, Mat Div, Chennai Campus, Madras 600127, Tamil Nadu, India
[3] Univ Bahrain, Coll Sci, Dept Phys, POB 32038, Zallaq, Bahrain
关键词
Copper ferrite; Hibiscus rosa sinensis; Self-heating process; Magnetic hyperthermia; Specific absorption rate (SAR); COBALT FERRITE NANOPARTICLES; MAGNETIC-PROPERTIES; ZNFE2O4; NANOPARTICLES; CATALYTIC-PROPERTIES; CATION DISTRIBUTION; CU; MG; TEMPERATURE; NI; HYDROGEN;
D O I
10.1016/j.jpcs.2017.12.024
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanosized copper ferrite (CuFe2O4) nanoparticles have been prepared by conventional (CCM) and microwave (MCM) combustion methods using Hibiscus rosa sinensis plant extract as a fuel. XRD and rietveld analysis confirmed the formation of single cubic phase and with crystallite size varying from 25 to 62 nm owing to grain growth after calcination. FT-IR analysis confirms the modes of the cubic CuFe2O4 phase, due to the stretching and bending vibrations. Spherical shaped particles are observed by scanning electron microscopy and the average particle size is found to be in the range of 50-200 rim. The chemical composition is confirmed by energy dispersive X-ray analysis. The optical band gap energy estimated using Kubelka-Munk function with the help of UV-Visible diffused reflectance spectroscopy, is found to be 2.34 and 2.22 eV for CCM and MCM respectively. Photoluminescence analysis indicates that both samples absorb light in the UV-visible region and exhibit emissions at 360, 376, and 412 nm. Magnetic measurements indicate a ferromagnetic behavior, where both magnetic properties very much influenced by the preparation method and calcination temperature: both saturation magnetization and coercivity are found higher when using CCM and MCM; from 29.40 to 34.09 emu/g while almost double from 224.4 to 432.2 Oe. The observed changes in physical properties are mainly associated with crystallinity, particle size, better chemical homogeneity, and cations distribution among tetrahedral/octahedral sites. The maximum specific absorption rate obtained was 14.63 W/g, which can be considered suitable and favorable for magnetic hyperthermia. This study highlighted the benefits of green synthesis of CuFe2O4 nano particles providing better magnetic properties for the platform of hyperthermia application.
引用
收藏
页码:162 / 171
页数:10
相关论文
共 50 条
  • [21] Mossbauer studies of nanosize CuFe2O4 particles
    Gajbhiye, NS
    Balaji, G
    Bhattacharyya, S
    Ghafari, M
    HYPERFINE INTERACTIONS, 2004, 156 (01): : 57 - 61
  • [22] Hydrothermally synthesized CuFe2O4/rGO and CuFe2O4/porous carbon nanocomposites
    Volodymyr Kotsyubynsky
    Ruslan Zapukhlyak
    Volodymyra Boychuk
    Myroslava Hodlevska
    Bogdan Rachiy
    Ivan Yaremiy
    Andrii Kachmar
    Mykola Hodlevsky
    Applied Nanoscience, 2022, 12 : 1131 - 1138
  • [23] Synthesis and Properties of Thin CuFe2O4 Films
    Popova, V. Yu.
    Petrov, V.V.
    Gulyaeva, I.A.
    Ivanishcheva, A.P.
    Tolstunov, M.I.
    Bayan, E.M.
    Russian Journal of Applied Chemistry, 2022, 95 (08): : 1129 - 1135
  • [24] Synthesis and Properties of Thin CuFe2O4 Films
    V. Yu. Popova
    V. V. Petrov
    I. A. Gulyaeva
    A. P. Ivanishcheva
    M. I. Tolstunov
    E. M. Bayan
    Russian Journal of Applied Chemistry, 2022, 95 : 1129 - 1135
  • [25] Synthesis and Properties of Thin CuFe2O4 Films
    Popova, V. Yu.
    Petrov, V. V.
    Gulyaeva, I. A.
    Ivanishcheva, A. P.
    Tolstunov, M. I.
    Bayan, E. M.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2022, 95 (08) : 1129 - 1135
  • [26] Magnetic Studies of CuFe2O4 Nanoparticles Prepared by Co-precipitation Method
    Subha, A.
    Shalini, M. Govindaraj
    Sahoo, Subasa C.
    INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015), 2016, 1728
  • [27] Hydrothermally synthesized CuFe2O4/rGO and CuFe2O4/porous carbon nanocomposites
    Kotsyubynsky, Volodymyr
    Zapukhlyak, Ruslan
    Boychuk, Volodymyra
    Hodlevska, Myroslava
    Rachiy, Bogdan
    Yaremiy, Ivan
    Kachmar, Andrii
    Hodlevsky, Mykola
    APPLIED NANOSCIENCE, 2022, 12 (04) : 1131 - 1138
  • [28] Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation
    Othman, Israa
    Abu Haija, Mohammad
    Ismail, Issam
    Zain, Jerina Hisham
    Banat, Fawzi
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 238
  • [29] Structural, optical and magnetic properties of CuFe2O4 nanoparticles
    Rani, B. Jansi
    Saravanakumar, B.
    Ravi, G.
    Ganesh, V.
    Ravichandran, S.
    Yuvakkumar, R.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (03) : 1975 - 1984
  • [30] Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor
    Deepshikha Rathore
    Supratim Mitra
    Rajnish Kurchania
    R. K. Pandey
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 1925 - 1932