Effect of Ion Assistance on the Formation of Composite Carbon-Silver Coatings Obtained by Pulsed-Plasma Deposition

被引:0
作者
Zavidovskiy, I. A. [1 ]
Streletskiy, O. A. [1 ]
Nishchak, O. Yu. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia
来源
JOURNAL OF SURFACE INVESTIGATION | 2022年 / 16卷 / 05期
基金
俄罗斯基础研究基金会;
关键词
amorphous carbon; silver nanoparticles; pulsed-plasma deposition; ion assistance; transmission electron microscopy; characteristic electron-energy-loss spectroscopy; electron diffraction; nucleation; HYDROGENATED AMORPHOUS-CARBON; ELECTRICAL-CONDUCTIVITY; TRIBOLOGICAL PROPERTIES; STRUCTURAL-PROPERTIES; OPTICAL-PROPERTIES; FILMS; IRRADIATION; MICROSTRUCTURE; AR+;
D O I
10.1134/S102745102205041X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study composite coatings based on amorphous carbon with encapsulated silver nanoparticles, synthesized by pulsed-plasma sputtering in an argon atmosphere. The deposition is assisted by 100-300 eV argon ions using a KLAN-53M source; samples without ion assistance are also prepared for comparison. Transmission electron microscopy, electron diffraction, and characteristic electron-energy-loss spectroscopy are used to analyze the effect of the ion-assistance parameters on silver nanoparticles and the properties of the carbon matrix. The maximum fraction of sp(3)-hybridized atoms in the amorphous carbon matrix is achieved at an assistance energy of 100 eV and a current density of 22 mu A/cm(2), which is due to material densification and the cross-linking of graphite layers by the ion beam at the specified parameters. The effect of ion-induced processes on the size distribution of silver nanoparticles is described. Ion assistance initiates several processes during deposition: defect formation promoting the formation of nucleation centers for particles 3-5 nm in size, surface diffusion enhancing the coalescence of adatoms and nuclei, and the selective sputtering of silver. The combination of these effects leads to the formation of silver particles of two characteristic sizes: 3-5 and 20-30 nm.
引用
收藏
页码:864 / 869
页数:6
相关论文
共 42 条
[31]   In-situ formation of ultra-hard titanium-based composite coatings on carbon steel through electro-spark deposition in different gas media [J].
Habibi, Farzad ;
Samadi, Ahad .
SURFACE & COATINGS TECHNOLOGY, 2024, 478
[32]   Formation of Graphene-Containing Porous Carbon Film for Electric Double-Layer Capacitor by Pulsed Plasma Chemical Vapor Deposition [J].
Matsushima, Masahiro ;
Noda, Mikio ;
Kalita, Golap ;
Uchida, Hideo ;
Wakita, Koichi ;
Umeno, Masayoshi .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (04)
[33]   Effect of ion peening and pulsed plasma nitriding on the structural properties of TiN coatings sputtered onto 100Cr6 steel [J].
Vales, S. ;
Avila, P. R. T. ;
Rosenkranz, A. ;
Droppa, R., Jr. ;
Soldera, F. ;
Garcia, J. ;
Alvarez, F. ;
Pinto, H. .
MATERIALS CHEMISTRY AND PHYSICS, 2019, 235
[34]   A new strategy to prevent biofilm and clot formation in medical devices: The use of atmospheric non-thermal plasma assisted deposition of silver-based nanostructured coatings [J].
Gallingani, Tommaso ;
Resca, Elisa ;
Dominici, Massimo ;
Gavioli, Giuliana ;
Laurita, Romolo ;
Liguori, Anna ;
Mari, Giorgio ;
Ortolani, Luca ;
Pericolini, Eva ;
Sala, Arianna ;
Laghi, Giulia ;
Petrachi, Tiziana ;
Arnauld, Gaelle Francoise ;
Accorsi, Luca ;
Rizzoli, Rita ;
Colombo, Vittorio ;
Gherardi, Matteo ;
Veronesi, Elena .
PLOS ONE, 2023, 18 (02)
[35]   Composition of Surface Layers Prepared by Ion Beam Assisted Deposition of Catalytic Metals from Pulsed Arc-Discharge Plasma onto Carbon Paper Substrates [J].
Poplavsky, V. V. ;
Luhin, V. G. ;
Koltunowicz, T. N. .
ACTA PHYSICA POLONICA A, 2017, 132 (02) :295-298
[36]   Unimodal and Bimodal Distributions of Silver Nanoparticles in a-C:Ag Structures with Different sp2/sp3 Carbon Ratios Produced by Low Energy Ion Assisted Pulse-Plasma Deposition [J].
Zavidovskiy, I. A. ;
Khaidarov, A. A. ;
Streletskiy, O. A. .
PHYSICS OF THE SOLID STATE, 2023, 64 (8) :474-484
[37]   Effect of deposition parameter on hardness of amorphous carbon film prepared by plasma immersion ion implantation using C2H2 [J].
Mitsuo, A. ;
Uchida, S. ;
Morikawa, K. ;
Kawaguchi, M. ;
Shiotani, K. ;
Suzuki, H. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 257 :753-757
[38]   Tuning the surface energy of fluorinated diamond-like carbon coatings via plasma immersion ion implantation plasma-enhanced chemical vapor deposition with 1,1,1,2-tetrafluoroethane [J].
Tong, Yuhan ;
Zahedian, Maryam ;
Zeng, Aiping ;
Vidrio, Ricardo ;
Efremov, Mike ;
Yin, Shenwei ;
Mei, Hongyan ;
Heaney, Patrick J. ;
Choy, Jennifer T. .
DIAMOND AND RELATED MATERIALS, 2025, 156
[39]   The Effect of Microstructure and Composition of Molybdenum and Tungsten-Doped Vacuum Ion-Plasma Carbon Coatings on Their Tribotechnical Properties under Dry Friction and Boundary Lubrication [J].
Buyanovskii, I. A. ;
Khrushchov, M. M. ;
Sulyandziga, D. A. ;
Samusenko, V. D. .
JOURNAL OF FRICTION AND WEAR, 2025, 46 (01) :16-25
[40]   Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition [J].
Manis-Levy, Hadar ;
Livneh, Tsachi ;
Zukerman, Ido ;
Mintz, Moshe H. ;
Raveh, Avi .
PLASMA SCIENCE & TECHNOLOGY, 2014, 16 (10) :954-959