Estimating the reduced moments of a random measure

被引:4
作者
Kiêu, K
Mora, M
机构
[1] INRA, Unite Biometrie, F-78026 Versailles, France
[2] Univ Paris 10, UFR Sci Econ, F-92001 Nanterre, France
关键词
Brillinger mixing condition; edge effect; moment measure; non-parametric estimation; palm distribution; point process; stochastic geometry; unbiased estimation;
D O I
10.1239/aap/1029954265
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a random measure for which distribution is invariant under the action of a standard transformation group. The reduced moments are defined by applying classical theorems on invariant measure decomposition. We present a general method for constructing unbiased estimators of reduced moments. Several asymptotic results are established under an extension of the Brillinger mixing condition. Examples related to stochastic geometry are given. AMS 1991 Subject Classification: Primary 60G57 Secondary 60D05; 62M99.
引用
收藏
页码:48 / 62
页数:15
相关论文
共 18 条
[1]  
AMBARTZUMIAN RV, 1990, ENCY MATH APPL, V33
[2]  
[Anonymous], RANDOM SETS INTEGRAL
[3]  
BADDELEY AJ, 1993, B INT STAT I, V55, P435
[4]  
BARNDORFFNIELSE.O, 1989, LECT NOTES STAT, V58
[5]  
BARNDORFFNIELSE.O, 1988, LECT NOTES STAT, V50
[6]  
Brillinger D.R, 1975, STOCHASTIC PROCESSES, V1, P55
[7]   Unbiased stereological estimation of the surface area of gradient surface processes [J].
Hahn, U ;
Stoyan, D .
ADVANCES IN APPLIED PROBABILITY, 1998, 30 (04) :904-920
[8]  
Jensen EBV., 1998, Local Stereology
[9]  
JOLIVET E, 1984, THESIS U PARIS SUD
[10]  
Kallenberg O., 1983, RANDOM MEASURES, DOI 10.1515/9783112525609