SHARP TRACE REGULARITY FOR AN ANISOTROPIC ELASTICITY SYSTEM

被引:4
作者
Kukavica, Igor [1 ]
Mazzucato, Anna L. [2 ]
Tuffaha, Amjad [3 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Petr Inst, Dept Math, Abu Dhabi, U Arab Emirates
基金
美国国家科学基金会;
关键词
Anisotropic elasticity; Legendre-Hadamard condition; hidden regularity; Lipschitz domain; fluid-structure interaction; INCOMPRESSIBLE VISCOUS-FLUID; STRUCTURE INTERACTION-MODEL; STOKES-LAME SYSTEM; WEAK SOLUTIONS; BOUNDARY CONDITIONS; HIDDEN REGULARITY; WAVE-EQUATION; MOTION; ELASTODYNAMICS; EXISTENCE;
D O I
10.1090/S0002-9939-2013-12181-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a sharp regularity result for the normal trace of the solution to the anisotropic linear elasticity system with Dirichlet boundary condition on a Lipschitz domain. Using this result we obtain a new existence result for a fluid-structure interaction model in the case when the structure is an anisotropic elastic body.
引用
收藏
页码:2673 / 2682
页数:10
相关论文
共 36 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
Araruna FD, 2008, COMMUN PUR APPL ANAL, V7, P1049
[3]  
Avalos G, 2007, CONTEMP MATH, V440, P15
[4]   Smoothness of weak solutions to a nonlinear fluid-structure interaction model [J].
Barbu, Viorel ;
Grujic, Zoran ;
Lasiecka, Irena ;
Tuffaha, Amjad .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (03) :1173-1207
[5]  
Barbu V, 2007, CONTEMP MATH, V440, P55
[6]   Regular solutions of a problem coupling a compressible fluid and an elastic structure [J].
Boulakia, M. ;
Guerrero, S. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (04) :341-365
[7]   Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid [J].
Boulakia, Muriel .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (02) :262-294
[8]   Optimal boundary control with critical penalization for a PDE model of fluid-solid interactions [J].
Bucci, Francesca ;
Lasiecka, Irena .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (1-2) :217-235
[9]  
CHAIRA A, 1993, CR ACAD SCI I-MATH, V316, P33
[10]   The interaction between quasilinear elastodynamics and the Navier-Stokes equations [J].
Coutand, D ;
Shkoller, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (03) :303-352