Heterogeneous integration based on low-temperature bonding for advanced optoelectronic devices

被引:12
|
作者
Higurashi, Eiji [1 ,2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Ubiquitous MEMS & Micro Engn UMEMSME, Tsukuba, Ibaraki 3058564, Japan
[2] Univ Tokyo, Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan
关键词
ROOM-TEMPERATURE; LITHIUM-NIOBATE; SOLDER; GE; ACTIVATION; SI;
D O I
10.7567/JJAP.57.04FA02
中图分类号
O59 [应用物理学];
学科分类号
摘要
Heterogeneous integration is an attractive approach to manufacturing future optoelectronic devices. Recent progress in low-temperature bonding techniques such as plasma activation bonding (PAB) and surface-activated bonding (SAB) enables a new approach to integrating dissimilar materials for a wide range of photonics applications. In this paper, low-temperature direct bonding and intermediate layer bonding techniques are focused, and their state-of-the-art applications in optoelectronic devices are reviewed. First, we describe the room-temperature direct bonding of Ge/Ge and Ge/Si wafers for photodetectors and of GaAs/SiC wafers for high-power semiconductor lasers. Then, we describe low-temperature intermediate layer bonding using Au and lead-free Sn-3.0Ag-0.5Cu solders for optical sensors and MEMS packaging. (C) 2018 The Japan Society of Applied Physics.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Development of low-temperature bonding platform using ultra-thin area selective deposition for heterogeneous integration
    Hsu, Mu-Ping
    Chen, Chi-Yu
    Chang, Hsin-Chi
    Hong, Zhong-Jie
    Weng, Ming-Wei
    Chen, Kuan-Neng
    APPLIED SURFACE SCIENCE, 2023, 635
  • [22] Investigations on low-temperature thermocompression bonding of passivated aluminum for enhanced wafer-level packaging and heterogeneous integration
    Diex, Kevin
    Jaeckel, Tobias
    Wuensch, Dirk
    Vogel, Klaus
    Bonitz, Jens
    Hanisch, Anke
    Wiemer, Maik
    Schulz, Stefan E.
    2024 SMART SYSTEMS INTEGRATION CONFERENCE AND EXHIBITION, SSI 2024, 2024,
  • [23] Advanced Sensor Systems by Low-Temperature Heterogeneous 3D Integration Processes<bold> </bold>
    Fernandez-Bolanos, Montserrat
    Muller, Andrei
    Weber, Josef
    Ramm, Peter
    2018 SYMPOSIUM ON DESIGN, TEST, INTEGRATION & PACKAGING OF MEMS AND MOEMS (DTIP), 2018,
  • [24] Low-temperature direct heterogeneous bonding of polyether ether ketone and platinum
    Fu, Weixin
    Shigetou, Akitsu
    Shoji, Shuichi
    Mizuno, Jun
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 79 : 860 - 865
  • [25] RF Performance of Devices Processed in Low-Temperature Sequential Integration
    Mota Frutuoso, T.
    Sideris, P.
    Lugo-Alvarez, J.
    Garros, X.
    Brunet, L.
    Fenouille-Beranger, C.
    Batude, P.
    Theodorou, C.
    Ferrari, P.
    Gaillard, F.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (07) : 3157 - 3162
  • [26] Be-doped low-temperature grown GaAs for ultrafast optoelectronic devices and applications
    Coutaz, JL
    Roux, JF
    Gaarder, A
    Marcinkevicius, S
    Jasinski, J
    Korona, K
    Kaminska, M
    Bertulis, K
    Krotkus, A
    SIMC-XI: 2000 INTERNATIONAL SEMICONDUCTING AND INSULATING MATERIALS CONFERENCE, PROCEEDINGS, 2000, : 89 - 96
  • [27] Investigation on Low-temperature Temporary Bonding for Microfluidic Devices in Lifescience Applications
    Han, Yang
    Dang, Chi
    Visker, Evert
    Visker, Jakob
    Humbertv, Aurelie
    Peng, Lan
    2021 7TH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE BONDING FOR 3D INTEGRATION (LTB-3D), 2021, : 36 - 36
  • [28] Low-temperature colloidal synthesis of CuBiS2 nanocrystals for optoelectronic devices
    Wang, Jian-Jun
    Akgul, Mehmet Zafer
    Bi, Yu
    Christodoulou, Sotirios
    Konstantatos, Gerasimos
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (47) : 24621 - 24625
  • [29] Low-temperature fabrication of sol-gel NiO film for optoelectronic devices based on the 'fuel' of urea
    Zhang, Yidong
    Li, Zhiwei
    CERAMICS INTERNATIONAL, 2016, 42 (05) : 6360 - 6368
  • [30] LOW-TEMPERATURE DEVICES
    MCWHORTER, AL
    IRE TRANSACTIONS ON EDUCATION, 1960, 3 (04): : 137 - 141