Automatic continuity of derivations on C*-algebras and JB*-triples

被引:40
作者
Peralta, Antonio M. [1 ]
Russo, Bernard [2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Derivation; Jordan derivation; Triple derivation; Jordan algebra; C*-algebra; JB*-algebra; Jordan triple; JB*-triple; Jordan triple module; Automatic continuity; KAPLANSKY THEOREM; REAL; HOMOMORPHISMS; DECOMPOSITION; LIE;
D O I
10.1016/j.jalgebra.2013.10.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of Banach Jordan triple modules and determine the precise conditions under which every derivation from a JB*-triple E into a Banach (Jordan) triple E-module is continuous. In particular, every derivation from a real or complex JB*-triple into its dual space is automatically continuous, motivating the study (which we have carried out elsewhere) of weakly amenable JB*-triples. Specializing to C*-algebras leads to a unified treatment of derivations and Jordan derivations into modules, shedding light on a celebrated theorem of Barry Johnson. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:960 / 977
页数:18
相关论文
共 48 条
[1]   The strong degree of von Neumann algebras and the structure of Lie and Jordan derivations [J].
Alaminos, J ;
Bresar, M ;
Villena, AR .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 :441-463
[2]  
[Anonymous], PACIFIC J MATH
[3]  
[Anonymous], 1976, LONDON MATH SOC LECT
[4]  
[Anonymous], 2001, IRISH MATH SOC B
[5]  
[Anonymous], 1968, AMS
[6]  
[Anonymous], 1984, MONOGR STUD MATH
[7]   HOMOMORPHISMS OF COMMUTATIVE BANACH ALGEBRAS [J].
BADE, WG ;
CURTIS, PC .
AMERICAN JOURNAL OF MATHEMATICS, 1960, 82 (03) :589-608
[8]   BOUNDED DERIVATIONS OF JB-TRIPLES [J].
BARTON, TJ ;
FRIEDMAN, Y .
QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (163) :255-268
[9]  
Becerra-Guerrero J., 2004, MATH ANN, V330, P45
[10]   Jordan derivations revisited [J].
Bresar, M .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2005, 139 :411-425