Principal derivations and codimension one ideals in contact and Frobenius Lie algebras

被引:7
作者
Barajas, T. [1 ]
Roque, E. [1 ]
Salgado, G. [1 ,2 ]
机构
[1] UASLP, Fac Ciencias, Av Salvador Nava S-N, San Luis Potosi 78290, Slp, Mexico
[2] Ctr Invest Matemat, Guanajuato, Mexico
关键词
Contact Lie algebras; symplectic Lie algebras; Frobenius Lie algebras; principal element; principal derivations; Primary; Secondary;
D O I
10.1080/00927872.2019.1623238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is twofold. First, we give an inductive procedure to construct a Frobenius (resp. contact) Lie algebra from a contact (resp. Frobenius) Lie algebra. Second, we prove that all Frobenius Lie algebras can be constructed in this way, i.e., every Frobenius Lie algebra can be constructed as an extension of a contact Lie algebra by adding a distinguished element called principal derivation. Hence, classification of Frobenius Lie algebras will follow from classification of contact Lie algebras and every contact Lie algebra which admits a principal derivation is isomorphic to a subalgebra of As an example, we classify all 4-dimensional Frobenius Lie algebra.
引用
收藏
页码:5380 / 5391
页数:12
相关论文
共 20 条
  • [1] Contact and Frobenius solvable Lie algebras with abelian nilradical
    Alvarez, M. A.
    Rodriguez-Vallarte, M. C.
    Salgado, G.
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (10) : 4344 - 4354
  • [2] CONTACT NILPOTENT LIE ALGEBRAS
    Alvarez, M. A.
    Rodriguez-Vallarte, M. C.
    Salgado, G.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1467 - 1474
  • [3] [Anonymous], 1990, Springer Series in Soviet Mathematics
  • [4] Campoamor-Stursberg R, 2004, NEW DEVELOPMENTS IN MATHEMATICAL PHYSICS RESEARCH, P55
  • [5] COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS
    CHEVALLEY, C
    EILENBERG, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (JAN) : 85 - 124
  • [6] CHU BY, 1974, T AM MATH SOC, V197, P145
  • [7] Csikós B, 2007, PUBL MATH-DEBRECEN, V70, P427
  • [8] Left invariant contact structures on Lie groups
    Diatta, Andre
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (05) : 544 - 552
  • [9] Diatta A, 2014, J LIE THEORY, V24, P849
  • [10] Fulton W., 1991, Representation theory: a first course