Algebraic Properties of the Module of Slice Regular Functions in Several Quaternionic Variables

被引:16
作者
Colombo, Fabrizio [1 ]
Sabadini, Irene [1 ]
Struppa, Daniele C. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Chapman Univ, Schmid Coll Sci, Orange, CA 92866 USA
关键词
algebraic analysis; slice regular functions; quaternions; MONOGENIC FUNCTIONS; CALCULUS; FORMULA; THEOREM; KERNEL;
D O I
10.1512/iumj.2012.61.4978
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define the notion of slice regularity for several quaternionic variables by employing the recent definition due to Ghiloni and Perotti in one variable [25]. We show that in the case of several variables slice regularity is equivalent to being solutions of intertwined Cauchy-Riemann type operators, and we give an algebraic treatment of these functions. We also sketch how to extend our ideas to the case of higher dimension.
引用
收藏
页码:1581 / 1602
页数:22
相关论文
共 34 条
[21]  
Eisenbud D., 2005, GRAD TEXT M, V229
[22]  
Fueter R., 1934, Commentarii Mathematici Helvetici, V7, P307, DOI DOI 10.1007/BF01292723
[23]   A new approach to Cullen-regular functions of a quaternionic variable [J].
Gentili, G ;
Struppa, DC .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (10) :741-744
[24]   A new theory of regular functions of a quaternionic variable [J].
Gentili, Graziano ;
Struppa, Daniele C. .
ADVANCES IN MATHEMATICS, 2007, 216 (01) :279-301
[25]   Slice regular functions of several Clifford variables [J].
Ghiloni, R. ;
Perotti, A. .
9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 :734-738
[26]   Slice regular functions on real alternative algebras [J].
Ghiloni, R. ;
Perotti, A. .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1662-1691
[27]  
Kreuzer M., 2005, COMPUTATIONAL COMMUT, V2
[28]  
MALGRANGE B, 1962, SYSTEMES DIFFERENTIA, P113
[29]  
MALGRANGE B., 1962, SYSTEMES DIFFERENTIE, P113
[30]  
PALAMODOV V.P., 1970, GRUND MATH WISS, V168