Algebraic Properties of the Module of Slice Regular Functions in Several Quaternionic Variables

被引:16
作者
Colombo, Fabrizio [1 ]
Sabadini, Irene [1 ]
Struppa, Daniele C. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Chapman Univ, Schmid Coll Sci, Orange, CA 92866 USA
关键词
algebraic analysis; slice regular functions; quaternions; MONOGENIC FUNCTIONS; CALCULUS; FORMULA; THEOREM; KERNEL;
D O I
10.1512/iumj.2012.61.4978
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define the notion of slice regularity for several quaternionic variables by employing the recent definition due to Ghiloni and Perotti in one variable [25]. We show that in the case of several variables slice regularity is equivalent to being solutions of intertwined Cauchy-Riemann type operators, and we give an algebraic treatment of these functions. We also sketch how to extend our ideas to the case of higher dimension.
引用
收藏
页码:1581 / 1602
页数:22
相关论文
共 34 条
[1]  
Adams W. W., 1999, J. Geom. Anal., V9, P1, DOI [DOI 10.1007/BF02923085.MR1760717, 10.1007/BF02923085, DOI 10.1007/BF02923085]
[2]   Analysis of the module determining the properties of regular functions of several quaternionic variables [J].
Adams, WW ;
Loustaunau, P .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 196 (01) :1-15
[3]  
[Anonymous], 1995, COMMUTATIVE ALGEBRA, DOI DOI 10.1007/978-1-4612-5350-1
[4]   A CRITERION FOR DETECTING M-REGULARITY [J].
BAYER, D ;
STILLMAN, M .
INVENTIONES MATHEMATICAE, 1987, 87 (01) :1-11
[5]  
Colombo F., 2004, Progress in Mathematical Physics, V39
[6]   A new functional calculus for noncommuting operators [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) :2255-2274
[7]   Sheaves of slice regular functions [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) :949-958
[8]  
Colombo F, 2011, PROG MATH, V289, P1, DOI 10.1007/978-3-0348-0110-2
[9]   The Pompeiu Formula for Slice Hyperholomorphic Functions [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. .
MICHIGAN MATHEMATICAL JOURNAL, 2011, 60 (01) :163-170
[10]   The Fueter mapping theorem in integral form and the F-functional calculus [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Sommen, Frank .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (17) :2050-2066