Microwave-assisted simultaneous reduction and titanate treatment of graphene oxide

被引:41
作者
Li, Jing [1 ]
Yang, Zhenzhen [1 ]
Qiu, Hanxun [1 ]
Dai, Yigang [2 ]
Zheng, Qingbin [1 ]
Zheng, Guang-Ping [3 ,4 ]
Yang, Junhe [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[2] Baoshan Iron & Steel Co Ltd, Res Inst, Shanghai 201900, Peoples R China
[3] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Shenzhen Res Inst, Kowloon, Hong Kong, Peoples R China
关键词
ELECTRICAL-CONDUCTIVITY; AQUEOUS DISPERSIONS; CARBON NANOTUBES; COUPLING AGENT; GRAPHITE OXIDE; NANOPLATELETS; COMPOSITES;
D O I
10.1039/c3ta12228j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Simultaneous reduction and functionalization of graphene oxide was conducted with the assistance of microwave irradiation. A titanate coupling agent was utilized for the functionalization of graphene. TEM, XPS and FTIR were employed to characterize the changes in graphene morphology and chemistry. The results suggested that the titanate coupling agent was bonded covalently on the graphene surfaces. The surface of graphene remained hydrophilic after the reduction of graphene oxide, while the electrical conductivity of graphene was partially restored. Titanate functionalized graphene was mixed with the waterborne polyurethane (PU) to prepare nanocomposites. The graphene/PU nanocomposites exhibited a conductive percolation threshold of 0.1 wt%.
引用
收藏
页码:11451 / 11456
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 1985, D418782 ASTM
[2]   Electrical conductivity of waterborne polyurethane/graphene composites prepared by solution mixing [J].
Ding, J. N. ;
Fan, Y. ;
Zhao, C. X. ;
Liu, Y. B. ;
Yu, C. T. ;
Yuan, N. Y. .
JOURNAL OF COMPOSITE MATERIALS, 2012, 46 (06) :747-752
[3]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[4]   Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media [J].
Hassan, M. A. Hassan ;
Abdelsayed, Victor ;
Khder, Abd El Rahman S. ;
AbouZeid, Khaled M. ;
Terner, James ;
El-Shall, M. Samy ;
Al-Resayes, Saud I. ;
El-Azhary, Adel A. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (23) :3832-3837
[5]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568
[6]   Dispersion of nonaqueous CO2Z ferrite powders with titanate coupling agent and poly(vinyl butyral) [J].
Hsiang, HI ;
Chen, CC ;
Tsai, JY .
APPLIED SURFACE SCIENCE, 2005, 245 (1-4) :252-259
[7]   The role of microwave absorption on formation of graphene from graphite oxide [J].
Hu, Han ;
Zhao, Zongbin ;
Zhou, Quan ;
Gogotsi, Yury ;
Qiu, Jieshan .
CARBON, 2012, 50 (09) :3267-3273
[8]   Processable aqueous dispersions of graphene nanosheets [J].
Li, Dan ;
Mueller, Marc B. ;
Gilje, Scott ;
Kaner, Richard B. ;
Wallace, Gordon G. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :101-105
[9]   Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes [J].
Li, Jing ;
Ma, Peng Cheng ;
Chow, Wing Sze ;
To, Chi Kai ;
Tang, Ben Zhong ;
Kim, Jang-Kyo .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3207-3215
[10]   Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites [J].
Li, Jing ;
Vaisman, Linda ;
Marom, Gad ;
Kim, Jang-Kyo .
CARBON, 2007, 45 (04) :744-750