HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION (vol 11, pg 522, 2013)

被引:0
作者
Williams, Matthew O. [1 ]
Schmid, Peter J. [2 ]
Kutz, J. Nathan [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Ecole Polytech, CNRS, Lab Hydrodynam, F-91128 Palaiseau, France
关键词
reduced-order methods; data analysis; nonlinear coherent structures; numerical integration; proper orthogonal decomposition; dynamic mode decomposition;
D O I
10.1137/130927309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this erratum, we correct a typographical error in reference 6 in [M. O. Williams, P. J. Schmid, and J. N. Kutz, Multiscale Model. Simul., 11 (2013), pp. 522-544].
引用
收藏
页码:1311 / 1311
页数:1
相关论文
共 50 条
[41]   Parameterized Reduced-Order Models for Probabilistic Analysis of Thermal Protection System Based on Proper Orthogonal Decomposition [J].
Zhang, Kun ;
Yao, Jianyao ;
Zhu, Wenxiang ;
Cao, Zhifu ;
Li, Teng ;
Xin, Jianqiang .
AEROSPACE, 2024, 11 (04)
[42]   Proper orthogonal decomposition versus Krylov subspace methods in reduced-order energy-converter models [J].
Hasan, M. D. Rokibul ;
Sabariego, Ruth V. ;
Geuzaine, Christophe ;
Paquay, Yannick .
2016 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2016,
[43]   An Enhanced Reduced-Order Model Based on Dynamic Mode Decomposition for Advection-Dominated Problems [J].
Lin, Yifan ;
Gao, Zhen .
JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (03)
[44]   Lagrangian dynamic mode decomposition for construction of reduced-order models of advection-dominated phenomena [J].
Lu, Hannah ;
Tartakovsky, Daniel M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407
[45]   A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition [J].
Cao, Yanhua ;
Zhu, Jiang ;
Navon, I. M. ;
Luo, Zhendong .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (10) :1571-1583
[46]   Open-loop control of cavity noise using Proper Orthogonal Decomposition reduced-order model [J].
Nagarajan, Kaushik Kumar ;
Singha, Sintu ;
Cordier, Laurent ;
Airiau, Christophe .
COMPUTERS & FLUIDS, 2018, 160 :1-13
[47]   Reduced order modeling of nonlinear microstructures through Proper Orthogonal Decomposition [J].
Gobat, Giorgio ;
Opreni, Andrea ;
Fresca, Stefania ;
Manzoni, Andrea ;
Frangi, Attilio .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 171
[48]   An Adjoint Proper Orthogonal Decomposition method for a neutronics reduced order model [J].
Lorenzi, Stefano .
ANNALS OF NUCLEAR ENERGY, 2018, 114 :245-258
[49]   Propulsion optimization of a jellyfish-inspired robot based on a nonintrusive reduced-order model with proper orthogonal decomposition [J].
Ying, Zixiang ;
Zhang, Haozhi ;
Wang, Linxiang ;
Melnik, Roderick .
BIOINSPIRATION & BIOMIMETICS, 2022, 17 (04)
[50]   An Efficient Chorin–Temam Projection Proper Orthogonal Decomposition Based Reduced-Order Model for Nonstationary Stokes Equations [J].
Xi Li ;
Yan Luo ;
Minfu Feng .
Journal of Scientific Computing, 2022, 93