HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION (vol 11, pg 522, 2013)

被引:0
作者
Williams, Matthew O. [1 ]
Schmid, Peter J. [2 ]
Kutz, J. Nathan [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Ecole Polytech, CNRS, Lab Hydrodynam, F-91128 Palaiseau, France
关键词
reduced-order methods; data analysis; nonlinear coherent structures; numerical integration; proper orthogonal decomposition; dynamic mode decomposition;
D O I
10.1137/130927309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this erratum, we correct a typographical error in reference 6 in [M. O. Williams, P. J. Schmid, and J. N. Kutz, Multiscale Model. Simul., 11 (2013), pp. 522-544].
引用
收藏
页码:1311 / 1311
页数:1
相关论文
共 50 条
[31]   A reduced-order model for heat transfer in multiphase flow and practical aspects of the proper orthogonal decomposition [J].
Brenner, Thomas A. ;
Fontenot, Raymond L. ;
Cizmas, Paul G. A. ;
O'Brien, Thomas J. ;
Breault, Ronald W. .
COMPUTERS & CHEMICAL ENGINEERING, 2012, 43 :68-80
[32]   A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation [J].
Omer San ;
Traian Iliescu .
Advances in Computational Mathematics, 2015, 41 :1289-1319
[33]   An object-oriented framework for reduced-order models using proper orthogonal decomposition (POD) [J].
Aquino, Wilkins .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (41-44) :4375-4390
[34]   Application of proper orthogonal decomposition to flow fields around various geometries and reduced-order modeling [J].
Nakamura, Yuto ;
Sato, Shintaro ;
Ohnishi, Naofumi .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 432
[35]   A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation [J].
San, Omer ;
Iliescu, Traian .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (05) :1289-1319
[36]   A Nonintrusive Parametrized Reduced-Order Model for Periodic Flows Based on Extended Proper Orthogonal Decomposition [J].
Li, Teng ;
Deng, Shiyuan ;
Zhang, Kun ;
Wei, Haibo ;
Wang, Runlong ;
Fan, Jun ;
Xin, Jianqiang ;
Yao, Jianyao .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (09)
[37]   Reduced-order control using low-rank dynamic mode decomposition [J].
Sashittal, Palash ;
Bodony, Daniel J. .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (06) :603-623
[38]   Reduced-order control using low-rank dynamic mode decomposition [J].
Palash Sashittal ;
Daniel J. Bodony .
Theoretical and Computational Fluid Dynamics, 2019, 33 :603-623
[39]   Reduced-Order Modeling for Dynamic Mode Decomposition Without an Arbitrary Sparsity Parameter [J].
Graff, John ;
Ringuette, Matthew J. ;
Singh, Tarunraj ;
Lagor, Francis D. .
AIAA JOURNAL, 2020, 58 (09) :3919-3931
[40]   A PARAMETRIC DYNAMIC MODE DECOMPOSITION FOR REDUCED-ORDER MODELING OF HIGHLY FLEXIBLE AIRCRAFT [J].
He, Tianyi ;
Su, Weihua .
PROCEEDINGS OF ASME 2024 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2024, 2024,