Epigenetic regulation of drug metabolism and transport

被引:52
作者
Peng, Lai [1 ,2 ]
Zhong, Xiaobo [1 ]
机构
[1] Univ Connecticut, Sch Pharm, Dept Pharmaceut Sci, Storrs, CT 06269 USA
[2] Shanghai Jiao Tong Univ, Key Lab Syst Biomed, Ctr Comparat Biomed, Inst Syst Biomed, Shanghai 200240, Peoples R China
关键词
Drug metabolism; Dna methylation; Epigenetics; Histone modification; Non-coding RNA; Transporter; EMBRYONIC STEM-CELLS; SMALL HETERODIMER PARTNER; HUMAN PROSTATE-CANCER; DNA METHYLATION; HISTONE METHYLATION; GENE-EXPRESSION; HUMAN GENOME; DEVELOPMENTAL REGULATORS; NONCODING RNAS; VALPROIC ACID;
D O I
10.1016/j.apsb.2015.01.007
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The drug metabolism is a biochemical process on modification of pharmaceutical substances through specialized enzymatic systems. Changes in the expression of drug-metabolizing enzyme genes can affect drug metabolism. Recently, epigenetic regulation of drug-metabolizing enzyme genes has emerged as an important mechanism Epigenetic regulation refers to heritable factors of genomic modifications that do not involve changes in DNA sequence. Examples of such modifications include DNA methylation, histone modifications, and non-coding RNAs. This review examines the widespread effect of epigenetic regulations on genes involved in drug metabolism, and also suggests a network perspective of epigenetic regulation. The epigenetic mechanisms have important clinical implications and may provide insights into effective drug development and improve, safety of drug therapy. (C) 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 77 条
[1]   Epigenetic gene regulation by noncoding RNAs [J].
Andersen, AA ;
Panning, B .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (03) :281-289
[2]  
Anttila S, 2003, CANCER RES, V63, P8623
[3]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[4]   Transcriptional corepression by SHP:: molecular mechanisms and physiological consequences [J].
Båvner, A ;
Sanyal, S ;
Gustafsson, JÅ ;
Treuter, E .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2005, 16 (10) :478-488
[5]   Genomic maps and comparative analysis of histone modifications in human and mouse [J].
Bernstein, BE ;
Kamal, M ;
Lindblad-Toh, K ;
Bekiranov, S ;
Bailey, DK ;
Huebert, DJ ;
McMahon, S ;
Karlsson, EK ;
Kulbokas, EJ ;
Gingeras, TR ;
Schreiber, SL ;
Lander, ES .
CELL, 2005, 120 (02) :169-181
[6]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[7]   Genetic and epigenetic regulation of gene expression in fetal and adult human livers [J].
Bonder, Marc Jan ;
Kasela, Silva ;
Kals, Mart ;
Tamm, Riin ;
Lokk, Kaie ;
Barragan, Isabel ;
Buurman, Wim A. ;
Deelen, Patrick ;
Greve, Jan-Willem ;
Ivanov, Maxim ;
Rensen, Sander S. ;
van Vliet-Ostaptchouk, Jana V. ;
Wolfs, Marcel G. ;
Fu, Jingyuan ;
Hofker, Marten H. ;
Wijmenga, Cisca ;
Zhernakova, Alexandra ;
Ingelman-Sundberg, Magnus ;
Franke, Lude ;
Milani, Lili .
BMC GENOMICS, 2014, 15
[8]   Functional role of G9a-induced histone methylation in small heterodimer partner-mediated transcriptional repression [J].
Boulias, K ;
Talianidis, I .
NUCLEIC ACIDS RESEARCH, 2004, 32 (20) :6096-6103
[9]   Polycomb complexes repress developmental regulators in murine embryonic stem cells [J].
Boyer, LA ;
Plath, K ;
Zeitlinger, J ;
Brambrink, T ;
Medeiros, LA ;
Lee, TI ;
Levine, SS ;
Wernig, M ;
Tajonar, A ;
Ray, MK ;
Bell, GW ;
Otte, AP ;
Vidal, M ;
Gifford, DK ;
Young, RA ;
Jaenisch, R .
NATURE, 2006, 441 (7091) :349-353
[10]   Chemotherapeutic Drug-Induced ABCG2 Promoter Demethylation as a Novel Mechanism of Acquired Multidrug Resistance [J].
Bram, Eran E. ;
Stark, Michal ;
Raz, Shachar ;
Assaraf, Yehuda G. .
NEOPLASIA, 2009, 11 (12) :1359-U133