Multifidelity Statistical Machine Learning for Molecular Crystal Structure Prediction

被引:49
|
作者
Egorova, Olga [1 ]
Hafizi, Roohollah [2 ]
Woods, David C. [1 ]
Day, Graeme M. [2 ]
机构
[1] Univ Southampton, Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Sch Chem, Computat Syst Chem, Southampton SO17 1BJ, Hants, England
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2020年 / 124卷 / 39期
基金
英国工程与自然科学研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; LATTICE ENERGIES; OXALIC-ACID; POLYMORPHISM; DESIGN; ALTERNATION; LANDSCAPES; ACCURACY; DYNAMICS; MODEL;
D O I
10.1021/acs.jpca.0c05006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The prediction of crystal structures from first-principles requires highly accurate energies for large numbers of putative crystal structures. High accuracy of solid state density functional theory (DFT) calculations is often required, but hundreds or more structures can be present in the low energy region of interest, so that the associated computational costs are prohibitive. Here, we apply statistical machine learning to predict expensive hybrid functional DFT (PBEO) calculations using a multifidelity approach to re-evaluate the energies of crystal structures predicted with an inexpensive force field. The method uses an autoregressive Gaussian process, making use of less expensive GGA DFT (PBE) calculations to bridge the gap between the force field and PBEO energies. The method is benchmarked on the crystal structure landscapes of three small, hydrogen-bonded organic molecules and shown to produce accurate predictions of energies and crystal structure ranking using small numbers of the most expensive calculations; the PBEO energies can be predicted with errors of less than 1 kJ mol(-1) with between 4.2 and 6.8% of the cost of the full calculations. As the model that we have developed is probabilistic, we discuss how the uncertainties in predicted energies impact the assessment of the energetic ranking of crystal structures.
引用
收藏
页码:8065 / 8078
页数:14
相关论文
共 50 条
  • [1] Multifidelity Machine Learning for Molecular Excitation Energies
    Vinod, Vivin
    Maity, Sayan
    Zaspel, Peter
    Kleinekathoefer, Ulrich
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (21) : 7658 - 7670
  • [2] Data-efficient machine learning for molecular crystal structure prediction
    Wengert, Simon
    Csanyi, Gabor
    Reuter, Karsten
    Margraf, Johannes T.
    CHEMICAL SCIENCE, 2021, 12 (12) : 4536 - 4546
  • [3] Roles and opportunities for machine learning in organic molecular crystal structure prediction and its applications
    Rebecca J. Clements
    Joshua Dickman
    Jay Johal
    Jennie Martin
    Joseph Glover
    Graeme M. Day
    MRS Bulletin, 2022, 47 : 1054 - 1062
  • [4] Roles and opportunities for machine learning in organic molecular crystal structure prediction and its applications
    Clements, Rebecca J.
    Dickman, Joshua
    Johal, Jay
    Martin, Jennie
    Glover, Joseph
    Day, Graeme M.
    MRS BULLETIN, 2022, 47 (10) : 1054 - 1062
  • [5] Review on Machine Learning Accelerated Crystal Structure Prediction
    Luo X.
    Wang Z.
    Gao P.
    Zhang W.
    Lv J.
    Wang Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (02): : 552 - 560
  • [6] Statistical Prediction and Machine Learning
    Govind, Sabeen
    Chen, John Tuhao
    Chen, Lincy Y.
    Lee, Clement
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2025,
  • [7] Statistical Prediction and Machine Learning
    Jogo, Fransiskus Serfian
    TECHNOMETRICS, 2025, 67 (01) : 184 - 185
  • [8] A Hybrid Machine Learning Approach for Structure Stability Prediction in Molecular Co-crystal Screenings
    Wengert, Simon
    Csanyi, Gabor
    Reuter, Karsten
    Margraf, Johannes T.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, : 4586 - 4593
  • [9] Geometric Deep Learning for Molecular Crystal Structure Prediction
    Kilgour, Michael
    Rogal, Jutta
    Tuckerman, Mark
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4743 - 4756
  • [10] Integrating machine learning in crystal structure prediction for pharmaceutical compounds
    Anelli, A.
    Dietrich, H.
    Ectors, P.
    Stowasser, F.
    Bereau, T.
    Neumann, M.
    Van Den Ende, J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E673 - E673