The Sphere Packing Bound for Memoryless Channels

被引:9
作者
Nakiboglu, B. [1 ]
机构
[1] Middle East Tech Univ, Ankara, Turkey
关键词
Augustin's method; sphere packing exponent; error exponent; reliability function; memoryless channels; Gaussian channels; Poisson channels; SIMPLE DERIVATION; ERROR; PROBABILITY; CAPACITY; REFINEMENT;
D O I
10.1134/S0032946020030011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sphere packing bounds (SPBs)-with prefactors that are polynomial in the block length-are derived for codes on two families of memoryless channels using Augustin's method: (possibly nonstationary) memoryless channels with (possibly multiple) additive cost constraints and stationary memoryless channels with convex constraints on the composition (i.e., empirical distribution, type) of the input codewords. A variant of Gallager's bound is derived in order to show that these sphere packing bounds are tight in terms of the exponential decay rate of the error probability with the block length under mild hypotheses.
引用
收藏
页码:201 / 244
页数:44
相关论文
共 54 条
  • [1] Altu Y., 2019, ARXIV190811419CSIT
  • [2] Altug Yucel, 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), P30
  • [3] Refinement of the Random Coding Bound
    Altug, Yuecel
    Wagner, Aaron B.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (10) : 6005 - 6023
  • [4] Refinement of the Sphere-Packing Bound: Asymmetric Channels
    Altug, Yuecel
    Wagner, Aaron B.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1592 - 1614
  • [5] [Anonymous], 2011, INFORM THEORY CODING, DOI DOI 10.1017/CBO9780511921889
  • [6] [Anonymous], 2007, MEASURE THEORY, DOI DOI 10.1007/978-3-540-34514-5
  • [7] ERROR ESTIMATES FOR LOW RATE CODES
    AUGUSTIN, U
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 14 (01): : 61 - &
  • [8] Augustin U., 1978, THESIS
  • [9] Blahut R., 1987, Principles and Practice of Information Theory
  • [10] INFORMATION BOUNDS OF FANO-KULLBACK TYPE
    BLAHUT, RE
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (04) : 410 - 421