On the Fiedler value of large planar graphs

被引:8
作者
Barriere, Lali [1 ]
Huemer, Clemens [1 ]
Mitsche, Dieter [1 ]
Orden, David [2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, E-08028 Barcelona, Spain
[2] Univ Alcala, Dept Fis & Matemat, Alcala De Henares, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
Fiedler value; Algebraic connectivity; Laplacian matrix; Planar graph; Bounded genus graph; Minor-free graph; ALGEBRAIC CONNECTIVITY; EXTREMAL FUNCTION; EIGENVALUES;
D O I
10.1016/j.laa.2013.05.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fiedler value lambda(2), also known as algebraic connectivity, is the second smallest Laplacian eigenvalue of a graph. We study the maximum Fiedler value among all planar graphs G with n vertices, denoted by lambda(2max), and we show the bounds 2 + Theta(1/n2) <= lambda(2max) <= 2 + O(1/n). We also provide bounds on the maximum Fiedler value for the following classes of planar graphs: Bipartite planar graphs, bipartite planar graphs with minimum vertex-degree 3, and outerplanar graphs. Furthermore, we derive almost tight bounds on lambda(2max) for two more classes of graphs, those of bounded genus and K-h-minor-free graphs. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2070 / 2084
页数:15
相关论文
共 22 条
[1]  
ALON N, 1990, J AM MATH SOC, V3, P801
[2]  
Barriere L., 2011, ELECT NOTES DISCRETE, V38, P111, DOI DOI 10.1016/J.ENDM.2011.09.019
[3]   Eigenvalue Bounds, Spectral Partitioning, and Metrical Deformations via Flows [J].
Biswal, Punyashloka ;
Lee, James R. ;
Rao, Satish .
JOURNAL OF THE ACM, 2010, 57 (03)
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]   Old and new results on algebraic connectivity of graphs [J].
de Abreu, Nair Maria Maia .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) :53-73
[6]  
Elsner U., 1997, SFB3939727 TU CHEMN
[7]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[8]  
Freitas P., 2001, A heawood-type result for the algebraic connectivity of graphs on surfaces
[9]   A SEPARATOR THEOREM FOR GRAPHS OF BOUNDED GENUS [J].
GILBERT, JR ;
HUTCHINSON, JP ;
TARJAN, RE .
JOURNAL OF ALGORITHMS, 1984, 5 (03) :391-407
[10]   A separator theorem in minor-closed classes [J].
Kawarabayashi, Ken-ichi ;
Reed, Bruce .
2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, :153-162