Model Problem in a Line with Two Pursuers and One Evader

被引:42
|
作者
Ganebny, Sergey A. [1 ]
Kumkov, Sergey S. [1 ]
Le Menec, Stephane [2 ]
Patsko, Valerii S. [1 ]
机构
[1] Inst Math & Mech, Ekaterinburg 620990, Russia
[2] EADS MBDA France, F-92358 Le Plessis Robinson, France
关键词
Pursuit-evasion differential game; Linear dynamics; Value function; Optimal feedback control; DIFFERENTIAL GAME; EVASION GAMES; SURFACES;
D O I
10.1007/s13235-012-0041-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An antagonistic differential game is considered where motion occurs in a straight line. Deviations between the first and second pursuers and the evader are computed at the instants T-1 and T-2, respectively. The pursuers act in coordination. Their aim is to minimize the resultant miss, which is equal to the minimum of the deviations happened at the instants T-1 and T-2. Numerical study of value function level sets (Lebesgue sets) for qualitatively different cases is given. A method for constructing optimal feedback controls is suggested on the basis of switching lines. The results of a numerical simulation are shown.
引用
收藏
页码:228 / 257
页数:30
相关论文
共 50 条
  • [21] Optimal Evading Strategies for Two-Pursuer/One-Evader Problems
    Makkapati, Venkata Ramana
    Sun, Wei
    Tsiotras, Panagiotis
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2018, 41 (04) : 851 - 862
  • [22] A problem of group pursuit in the class of impulse strategies of pursuers
    N. N. Petrov
    Journal of Computer and Systems Sciences International, 2009, 48 : 199 - 205
  • [23] A problem of group pursuit in the class of impulse strategies of pursuers
    Petrov, N. N.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2009, 48 (02) : 199 - 205
  • [24] Multiple Capture of an Evader in the Linear Pursuit Problem on Time Scales
    E. S. Mozhegova
    N. N. Petrov
    Proceedings of the Steklov Institute of Mathematics, 2024, 327 (Suppl 1) : S215 - S225
  • [25] Multiple capture of an evader in the linear pursuit problem on timescales.
    Mozhegova, E. S.
    Petrov., N. N.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2024, 30 (03): : 217 - 228
  • [26] SOLUTION OF SIMPLE PURSUIT-EVASION PROBLEM WHEN EVADER MOVES ON A GIVEN CURVE
    Kuchkarov, Atamurat Sh.
    INTERNATIONAL GAME THEORY REVIEW, 2010, 12 (03) : 223 - 238
  • [27] Cooperative Pursuit With Multi-Pursuer and One Faster Free-Moving Evader
    Fang, Xu
    Wang, Chen
    Xie, Lihua
    Chen, Jie
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (03) : 1405 - 1414
  • [28] A Differential Game Problem of Many Pursuers and One Evader in the Hilbert Space ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell_2$$\end{document}
    Jewaidu Rilwan
    Poom Kumam
    Gafurjan Ibragimov
    Abbas Ja’afaru Badakaya
    Idris Ahmed
    Differential Equations and Dynamical Systems, 2023, 31 (4) : 925 - 943
  • [29] Multiple-Pursuer/One-Evader Pursuit-Evasion Game in Dynamic Flowfields
    Sun, Wei
    Tsiotras, Panagiotis
    Lolla, Tapovan
    Subramani, Deepak N.
    Lermusiaux, Pierre F. J.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (07) : 1627 - 1637
  • [30] Control Barrier Function Based Cooperative Pursuit with Multi-Pursuer and One Free-Moving Evader
    Shen, Jiajun
    Ze, Kunrui
    Wang, Wei
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,