Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations

被引:71
作者
Slunyaev, A. [1 ,2 ]
Pelinovsky, E. [1 ,2 ,3 ]
Sergeeva, A. [1 ,2 ]
Chabchoub, A. [4 ,5 ]
Hoffmann, N. [5 ,6 ]
Onorato, M. [7 ,8 ]
Akhmediev, N. [9 ]
机构
[1] Inst Appl Phys, Nizhnii Novgorod, Russia
[2] Nizhnii Novgorod State Tech Univ, Nizhnii Novgorod, Russia
[3] Johannes Kepler Univ Linz, A-4040 Linz, Austria
[4] Swinburne Univ Technol, Ctr Ocean Engn Sci & Technol, Hawthorn, Vic 3122, Australia
[5] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England
[6] Hamburg Univ Technol, Dynam Grp, D-21073 Hamburg, Germany
[7] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy
[8] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[9] Australian Natl Univ, Res Sch Phys & Engn, Opt Sci Grp, Canberra, ACT 0200, Australia
基金
奥地利科学基金会; 澳大利亚研究理事会;
关键词
SCHRODINGER-EQUATION;
D O I
10.1103/PhysRevE.88.012909
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The rogue wave solutions (rational multibreathers) of the nonlinear Schrodinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.
引用
收藏
页数:10
相关论文
共 33 条
  • [1] Waves that appear from nowhere and disappear without a trace
    Akhmediev, N.
    Ankiewicz, A.
    Taki, M.
    [J]. PHYSICS LETTERS A, 2009, 373 (06) : 675 - 678
  • [2] Rogue waves and rational solutions of the nonlinear Schroumldinger equation
    Akhmediev, Nail
    Ankiewicz, Adrian
    Soto-Crespo, J. M.
    [J]. PHYSICAL REVIEW E, 2009, 80 (02):
  • [3] EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    AKHMEDIEV, NN
    ELEONSKII, VM
    KULAGIN, NE
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) : 809 - 818
  • [4] AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
  • [5] Observation of a hierarchy of up to fifth-order rogue waves in a water tank
    Chabchoub, A.
    Hoffmann, N.
    Onorato, M.
    Slunyaev, A.
    Sergeeva, A.
    Pelinovsky, E.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW E, 2012, 86 (05)
  • [6] Experimental study of spatiotemporally localized surface gravity water waves
    Chabchoub, A.
    Akhmediev, N.
    Hoffmann, N. P.
    [J]. PHYSICAL REVIEW E, 2012, 86 (01)
  • [7] Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves
    Chabchoub, A.
    Hoffmann, N.
    Onorato, M.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW X, 2012, 2 (01):
  • [8] Rogue Wave Observation in a Water Wave Tank
    Chabchoub, A.
    Hoffmann, N. P.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (20)
  • [9] Chalikov D, 1998, ADV FLUID MECH SER, V17, P207
  • [10] On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation
    Dubard, P.
    Gaillard, P.
    Klein, C.
    Matveev, V. B.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) : 247 - 258