MR Tracking of Iron-labeled Glass Radioembolization Microspheres during Transcatheter Delivery to Rabbit VX2 Liver Tumors: Feasibility Study

被引:38
作者
Gupta, Twinkle [1 ]
Virmani, Sumeet [1 ]
Neidt, Tod M. [1 ]
Szolc-Kowalska, Barbara [1 ]
Sato, Kent T. [1 ]
Ryu, Robert K. [1 ]
Lewandowski, Robert J. [1 ]
Gates, Vanessa L. [1 ]
Woloschak, Gayle E. [1 ]
Salem, Riad [1 ]
Omary, Reed A. [1 ]
Larson, Andrew C. [1 ]
机构
[1] Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA
关键词
D O I
10.1148/radiol.2491072027
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To prospectively test the hypothesis that iron labeling of radioembolization microspheres permits their visualization by using magnetic resonance (MR) imaging for in vivo tracking during transcatheter delivery to liver tumors. Materials and Methods: All experiments were approved by the Institutional Animal Care and Use Committee. Phantom studies were performed to quantify microsphere relaxivity and volume susceptibility properties and compare image contrast patterns resulting from aggregate deposition of unlabeled and iron-labeled microspheres. In seven rabbits in which nine VX2 liver tumors were implanted, T2*-weighted gradient-echo (GRE) MR images with negative image contrast (NC), white-marker (WM) GRE images with positive image contrast (PC), and on-resonance water-suppression turbo spin-echo (SE) images with PC were obtained before and after catheter-directed administration of microspheres into the hepatic artery. During each injection, serial GRE acquisitions were performed for real-time visualization of microsphere delivery. Contrast-to-noise ratios (CNRs) were measured between regions of microsphere accumulation and regions of normal liver parenchyma that demonstrated no apparent microsphere accumulation. Pre- and postinjection CNR measurements at identical spatial positions were compared by using paired t test (alpha = .05). Results: Conventional microspheres did not produce detectable image contrast in phantoms. Iron-labeled microspheres produced susceptibility-induced dipole patterns with spatial extent of image contrast increasing with increasing microsphere dose. Real-time image series depicted both preferential delivery to tumor tissues and nontargeted delivery to adjacent organs. T2*-weighted GRE, WM GRE, and on-resonance water-suppression turbo SE each permitted in vivo visualization of the microsphere deposition, with postinjection CNR values (mean, 14.29 +/- 3.98 [standard deviation], 1.87 +/- 0.93, and 19.30 +/- 8.72, respectively) significantly greater than corresponding preinjection CNR values (mean, 2.02 +/- 4.65, 0.02 +/- 0.27, 0.85 +/- 2.65, respectively) (P < .05). Conclusion: Microsphere tracking during radioembolization may permit real-time verification of delivery and detection of extrahepatic shunting. (C) RSNA, 2008
引用
收藏
页码:845 / 854
页数:10
相关论文
共 21 条
[1]  
ACKERMAN NB, 1972, CANCER, V29, P435, DOI 10.1002/1097-0142(197202)29:2<435::AID-CNCR2820290227>3.0.CO
[2]  
2-K
[3]   Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells [J].
Bulte, JWM ;
Douglas, T ;
Witwer, B ;
Zhang, SC ;
Strable, E ;
Lewis, BK ;
Zywicke, H ;
Miller, B ;
van Gelderen, P ;
Moskowitz, BM ;
Duncan, ID ;
Frank, JA .
NATURE BIOTECHNOLOGY, 2001, 19 (12) :1141-1147
[4]   In vivo magnetic resonance tracking of magnetically labeled cells after transplantation [J].
Bulte, JWM ;
Duncan, ID ;
Frank, JA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2002, 22 (08) :899-907
[5]   Chemoembolization of liver tumor in a rabbit model: Assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis [J].
Geschwind, JFH ;
Artemov, D ;
Abraham, S ;
Omdal, D ;
Huncharek, MS ;
McGee, C ;
Arepally, A ;
Lambert, D ;
Venbrux, AC ;
Lund, GB .
JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2000, 11 (10) :1245-1255
[6]  
Haacke EM, 1999, MAGNETIC RESONANCE I
[7]   Recognizing extrahepatic collateral vessels that supply hepatocellular carcinoma to avoid complications of transcatheter arterial chemoembolization [J].
Kim, HC ;
Chung, JW ;
Lee, W ;
Jae, HJ ;
Park, JH .
RADIOGRAPHICS, 2005, 25 :S25-S40
[8]   Yttrium 90 Bremsstrahlung SPECT/CT scan demonstrating areas of tracer/tumour uptake [J].
Mansberg, Robert .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2007, 34 (11) :1887-1887
[9]   Yttrium-90 microsphere therapy for hepatic malignancy: Devices, indications, technical considerations, and potential complications [J].
Murthy, R ;
Nunez, R ;
Szklaruk, J ;
Erwin, W ;
Madoff, DC ;
Gupta, S ;
Ahrar, K ;
Wallace, MJ ;
Cohen, A ;
Coldwell, DM ;
Kennedy, AS ;
Hicks, ME .
RADIOGRAPHICS, 2005, 25 :S41-S56
[10]   Liver tumors: MR imaging of radioactive holmium microspheres - Phantom and rabbit study [J].
Nijsen, JFW ;
Seppenwoolde, JH ;
Havenith, T ;
Bos, C ;
Bakker, CJG ;
Schip, ADVH .
RADIOLOGY, 2004, 231 (02) :491-499