Iterative rank-order normalization of gene expression microarray data

被引:95
作者
Welsh, Eric A. [1 ]
Eschrich, Steven A. [1 ]
Berglund, Anders E. [1 ]
Fenstermacher, David A. [1 ]
机构
[1] Univ S Florida, H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL 33612 USA
关键词
Microarray; Expression; Normalization; Affymetrix; GeneChip; AFFYMETRIX; SUMMARIES; SET;
D O I
10.1186/1471-2105-14-153
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Many gene expression normalization algorithms exist for Affymetrix GeneChip microarrays. The most popular of these is RMA, primarily due to the precision and low noise produced during the process. A significant strength of this and similar approaches is the use of the entire set of arrays during both normalization and model-based estimation of signal. However, this leads to differing estimates of expression based on the starting set of arrays, and estimates can change when a single, additional chip is added to the set. Additionally, outlier chips can impact the signals of other arrays, and can themselves be skewed by the majority of the population. Results: We developed an approach, termed IRON, which uses the best-performing techniques from each of several popular processing methods while retaining the ability to incrementally renormalize data without altering previously normalized expression. This combination of approaches results in a method that performs comparably to existing approaches on artificial benchmark datasets (i.e. spike-in) and demonstrates promising improvements in segregating true signals within biologically complex experiments. Conclusions: By combining approaches from existing normalization techniques, the IRON method offers several advantages. First, IRON normalization occurs pair-wise, thereby avoiding the need for all chips to be normalized together, which can be important for large data analyses. Secondly, the technique does not require similarity in signal distribution across chips for normalization, which can be important for maintaining biologically relevant differences in a heterogeneous background. Lastly, IRON introduces fewer post-processing artifacts, particularly in data whose behavior violates common assumptions. Thus, the IRON method provides a practical solution to common needs of expression analysis. A software implementation of IRON is available at [http://gene.moffitt.org/libaffy/].
引用
收藏
页数:11
相关论文
共 18 条
[1]  
Affymetrix Inc, 2002, STAT ALG DESCR DOC
[2]   Normalization of oligonucleotide arrays based on the least-variant set of genes [J].
Calza, Stefano ;
Valentini, Davide ;
Pawitan, Yudi .
BMC BIOINFORMATICS, 2008, 9 (1)
[3]   Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset [J].
Choe, SE ;
Boutros, M ;
Michelson, AM ;
Church, GM ;
Halfon, MS .
GENOME BIOLOGY, 2005, 6 (02)
[4]   ROBUST LOCALLY WEIGHTED REGRESSION AND SMOOTHING SCATTERPLOTS [J].
CLEVELAND, WS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (368) :829-836
[5]   A benchmark for affymetrix GeneChip expression measures [J].
Cope, LM ;
Irizarry, RA ;
Jaffee, HA ;
Wu, ZJ ;
Speed, TP .
BIOINFORMATICS, 2004, 20 (03) :323-331
[6]   Gene Expression Omnibus: NCBI gene expression and hybridization array data repository [J].
Edgar, R ;
Domrachev, M ;
Lash, AE .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :207-210
[7]   Libaffy: software for processing Affymetrix(R) GeneChip(R) data [J].
Eschrich, Steven A. ;
Hoerter, Andrew M. .
BIOINFORMATICS, 2007, 23 (12) :1562-1564
[8]   Tissue-Specific RMA models to incrementally normalize Affymetrix GeneChip Data [J].
Eschrich, Steven A. ;
Hoerter, Andrew M. ;
Bloom, Gregory C. ;
Fenstermacher, David A. .
2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-8, 2008, :2419-2422
[9]   Implementing Personalized Medicine in a Cancer Center [J].
Fenstermacher, David A. ;
Wenham, Robert M. ;
Rollison, Dana E. ;
Dalton, William S. .
CANCER JOURNAL, 2011, 17 (06) :528-536
[10]   Algorithm-driven Artifacts in median polish summarization of Microarray data [J].
Giorgi, Federico M. ;
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BMC BIOINFORMATICS, 2010, 11