An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band

被引:115
作者
Cristobal, Jordi [1 ,2 ]
Jimenez-Munoz, Juan C. [3 ]
Prakash, Anupma [2 ]
Mattar, Cristian [4 ]
Skokovic, Drazen [3 ]
Sobrino, Jose A. [3 ]
机构
[1] Asiaq Greenland Survey, Postbox 1003, Nuuk 3900, Greenland
[2] Univ Alaska Fairbanks, Inst Geophys, 903 Koyukuk Dr, Fairbanks, AK 99775 USA
[3] Univ Valencia, GCU IPL, Catedrat Jose Beltran 2, Paterna Valencia 46980, Spain
[4] Univ Aysen, Obispo Vielmo 62, Coyhaique 5950000, Chile
基金
美国国家科学基金会;
关键词
land surface temperature; Landsat-8; TIRS; atmospheric correction; SPLIT-WINDOW ALGORITHM; WATER-VAPOR RETRIEVAL; INFRARED-SENSOR TIRS; VALIDATION; DERIVATION; IMAGERY;
D O I
10.3390/rs10030431
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land surface temperature (LST) is one of the sources of input data for modeling land surface processes. The Landsat satellite series is the only operational mission with more than 30 years of archived thermal infrared imagery from which we can retrieve LST. Unfortunately, stray light artifacts were observed in Landsat-8 TIRS data, mostly affecting Band 11, currently making the split-window technique impractical for retrieving surface temperature without requiring atmospheric data. In this study, a single-channel methodology to retrieve surface temperature from Landsat TM and ETM+ was improved to retrieve LST from Landsat-8 TIRS Band 10 using near-surface air temperature (T-a) and integrated atmospheric column water vapor (omega) as input data. This improved methodology was parameterized and successfully evaluated with simulated data from a global and robust radiosonde database and validated with in situ data from four flux tower sites under different types of vegetation and snow cover in 44 Landsat-8 scenes. Evaluation results using simulated data showed that the inclusion of T-a together with omega within a single-channel scheme improves LST retrieval, yielding lower errors and less bias than models based only on omega. The new proposed LST retrieval model, developed with both omega and T-a, yielded overall errors on the order of 1 K and a bias of -0.5 K validated against in situ data, providing a better performance than other models parameterized using omega and T-a or only omega models that yielded higher error and bias.
引用
收藏
页数:14
相关论文
共 41 条
[1]  
Aires F, 2002, J APPL METEOROL, V41, P144, DOI 10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO
[2]  
2
[3]  
Barsi Julia A., 2005, Proceedings of the SPIE - The International Society for Optical Engineering, V5882, P1, DOI 10.1117/12.619990
[4]  
Barsi JA, 2003, INT GEOSCI REMOTE SE, P3014
[5]   Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration [J].
Barsi, Julia A. ;
Schott, John R. ;
Hook, Simon J. ;
Raqueno, Nina G. ;
Markham, Brian L. ;
Radocinski, Robert G. .
REMOTE SENSING, 2014, 6 (11) :11607-11626
[6]  
CHEDIN A, 1985, J CLIM APPL METEOROL, V24, P128, DOI 10.1175/1520-0450(1985)024<0128:TIIIMA>2.0.CO
[7]  
2
[8]  
Chevallier F, 1998, J APPL METEOROL, V37, P1385, DOI 10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO
[9]  
2
[10]   Combining remote sensing and GIS climate modelling to estimate daily forest evapotranspiration in a Mediterranean mountain area [J].
Cristobal, J. ;
Poyatos, R. ;
Ninyerola, M. ;
Llorens, P. ;
Pons, X. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (05) :1563-1575